Contents

Chapter 1 INTRODUCTION
 1.1 Production Systems 19
 1.2 Automation in Production Systems 25
 1.3 Manual Labor in Production Systems 29
 1.4 Automation Principles and Strategies 31
 1.5 Organization of this Book 36

PART I: OVERVIEW OF MANUFACTURING 39

Chapter 2 MANUFACTURING OPERATIONS
 2.1 Manufacturing Industries and Products 43
 2.2 Manufacturing Operations 46
 2.3 Production Facilities 50
 2.4 Product/Production Relationships 55
 2.5 Lean Production 60

Chapter 3 MANUFACTURING MODELS AND METRICS
 3.1 Mathematical Models of Production Performance 65
 3.2 Manufacturing Costs 73
APPENDIX Averaging Procedures for Production Models 82

PART II: AUTOMATION AND CONTROL TECHNOLOGIES 85

Chapter 4 INTRODUCTION TO AUTOMATION
 4.1 Basic Elements of an Automated System 87
 4.2 Advanced Automation Functions 95
 4.3 Levels of Automation 100

Chapter 5 INDUSTRIAL CONTROL SYSTEMS
 5.1 Process Industries Versus Discrete Manufacturing Industries 105
 5.2 Continuous Versus Discrete Control 107
 5.3 Computer Process Control 113
18.4 Cellular Manufacturing 534
18.5 Applications of Group Technology 539
18.6 Quantitative Analysis in Cellular Manufacturing 541

Chapter 19 FLEXIBLE MANUFACTURING SYSTEMS 554
19.1 What is a Flexible Manufacturing System? 556
19.2 FMS Components 561
19.3 FMS Applications and Benefits 571
19.4 FMS Planning and Implementation Issues 574
19.5 Quantitative Analysis of Flexible Manufacturing Systems 576

PART V: QUALITY CONTROL IN MANUFACTURING SYSTEMS 601

Chapter 20 QUALITY PROGRAMS FOR MANUFACTURING 601
20.1 Quality in Design and Manufacturing 602
20.2 Traditional and Modern Quality Control 603
20.3 Process Variability and Process Capability 606
20.4 Statistical Process Control 610
20.5 Six Sigma 621
20.6 The Six Sigma DMAIC Procedure 624
20.7 Taguchi Methods in Quality Engineering 631
20.8 ISO 9000 636

Chapter 21 INSPECTION PRINCIPLES AND PRACTICES 645
21.1 Inspection Fundamentals 646
21.2 Sampling vs. 100% Inspection 651
21.3 Automated Inspection 655
21.4 When and Where to Inspect 657
21.5 Quantitative Analysis of Inspection 661

Chapter 22 INSPECTION TECHNOLOGIES 674
22.1 Inspection Metrology 675
22.2 Contact vs. Noncontact Inspection Techniques 679
22.3 Conventional Measuring and Gaging Techniques 680
22.4 Coordinate Measuring Machines 681
22.5 Surface Measurement 695
22.6 Machine Vision 698
22.7 Other Optical Inspection Methods 704
22.8 Noncontact Nonoptical Inspection Techniques 707

PART VI: MANUFACTURING SUPPORT SYSTEMS 713

Chapter 23 PRODUCT DESIGN AND CAD/CAM IN THE PRODUCTION SYSTEM 713
23.1 Product Design and CAD 715
23.2 CAD System Hardware 721
23.3 CAM, CAD/CAM, and CIM 724
23.4 Quality Function Deployment 728

Chapter 24 PROCESS PLANNING AND CONCURRENT ENGINEERING 735
24.1 Process Planning 736
24.2 Computer-Aided Process Planning 742
24.3 Concurrent Engineering and Design for Manufacturing 744
24.4 Advanced Manufacturing Planning 748

Chapter 25 PRODUCTION PLANNING AND CONTROL SYSTEMS 753
25.1 Aggregate Production Planning and the Master Production Schedule 756
25.2 Material Requirements Planning 757
25.3 Capacity Planning 763
25.4 Shop Floor Control 765
25.5 Inventory Control 771
25.6 Extensions of MRP 778

Chapter 26 JUST-IN-TIME AND LEAN PRODUCTION 785
26.1 Lean Production and Waste in Manufacturing 786
26.2 Just-in-Time Production Systems 790
26.3 Autonomination 797
26.4 Worker Involvement 801

Index 812