Quantum Field Theory Demystified

David McMahon

Quantum field theory. P.J. Mulders Department of Theoretical Physics, Department of Physics and Astronomy, Faculty of Sciences, VU University, 1081 HV Amsterdam, the Netherlands. E-mail: mulders@few.vu.nl. November 2011 (version 6.04).

Contents. 1 Introduction 1.1 Quantum field theory . . 1.2 Units . . 1.3 Conventions for vectors and tensors . . 1.1 Why Quantum Field Theory? In (non-relativistic) Quantum Mechanics, the dynamics of a particle is described by the time-evolution of its associated wave-function $\psi(t, x)$ with respect to the non-relativistic Schrödinger equation. $i\hbar \frac{\partial}{\partial t} \psi(t, x)$. Before quantising field theory let us briefly recap the transition from classical to quantum mechanics. We first switch from the Lagrange formulation to the canonical formalism of the classical theory. In classical mechanics the canonical momentum conjugate to $q_i(t)$ is. Learn quantum field theory relatively easily. Trying to comprehend quantum field theory but don't have infinite time or the IQ of Einstein? No problem! This easy-to-follow guide helps you understand this complex subject matter without spending a lot of energy. Quantum Field Theory Demystified covers essential principles such as particle physics and special relativity. You'll learn about Lagrangian field theory. This item: Quantum Field Theory Demystified by David McMahon Paperback $17.99. Only 10 left in stock (more on the way). Ships from and sold by Amazon.com. FREE Shipping on orders over $25. Details. Relativity Demystified by David McMahon Paperback $13.59.
I wanted this one to compliment the field theory book I have already (Peskin and Schroeder) because I find the latter a little hard to follow on my own (I am currently taking Relativistic Quantum Mechanics and will be taking QFT course at some time in the future). I am always skeptical about these self-teaching series, especially when it comes to quantum field theory. It seems like it goes through all the basic elements of QFT and I can actually read and follow, however there are several obvious typos (such as "charge of strange quark is +2/3") and the author is "a researcher at Quantum Field Theory Demystified covers essential principles such as particle physics and special relativity. You'll learn about Lagrangian field theory, group theory, and electroweak theory. The book also explains continuous and discrete symmetries, spontaneous symmetry breaking, and supersymmetry. With thorough coverage of the mathematics of quantum field theory and featuring end-of-chapter quizzes and a final exam to test your knowledge, this book will teach you the fundamentals of this theoretical framework in no time at all. This fast and easy guide offers: Numerous figures to illust Quantum Field Theory Demystified covers essential principles such as particle physics and special relativity. You'll learn about Lagrangian field theory, group theory, and electroweak theory. The book also explains continuous and discrete symmetries, spontaneous symmetry breaking, and supersymmetry. With thorough coverage of the mathematics of quantum field theory and featuring end-of-chapter quizzes and a final exam to test your knowledge, this book will teach you the fundamentals of this theoretical framework in no time at all. This fast and easy guide offers:
Quantum field theory, body of physical principles that combines quantum mechanics and relativity to explain the behavior of subatomic particles. The current theoretical understanding of the fundamental interactions of matter is based on quantum field theories of these forces. Research continues, however, to develop a single unified field theory that encompasses all the forces. In such a unified theory, all the forces would have a common origin and would be related by mathematical symmetries. The simplest result would be that all the forces would have identical properties and that a mechanism called spontaneous symmetry breaking would account for the observed differences. In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics (but notably not general relativity's description of gravity) and is used to construct physical models of subatomic particles (in particle physics) and quasiparticles (in condensed matter physics).