A Course in Model Theory I:
Introduction¹

Rami Grossberg

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213

¹This preliminary draft is dated from January 17, 2015. The book will be published by Cambridge University Press. The book is approximately 93.82% complete, I expect the final version to have about 745 pages, many sections of the current version will be revised and few will be added. I hope to have a stable version of this volume soon. This version is made only for students studying model theory with me and not for distribution outside CMU. If you have a copy not received directly from me, it is an illegal copy and I request that you will not share with others.

Exercise #=701.
www.math.cmu.edu/~rami
©Rami Grossberg
Contents

Preface 7
 1. About this book 7
 2. A mathematical introduction to the book 15
 Course outlines 22

Part 1. Definability 25

Chapter 1. Fundamentals 27
 Introduction 27
 1. Structures and languages 31
 2. The basic concepts 47
 3. On existence of models and elementary submodels 81
 4. The Erdős-Rado Theorem 99
 5. Applications of the compactness theorem 114
 6. Joint embedding and the Amalga ma tion properties in first-order logic 129
 7. Types and the diagram of T 136
 8. Some extensions of first-order logic 148
 9. Countable models and Henkin’s omitting types theorem 169
 10. Models of weak set theory 185
 11. Absoluteness 193
 12. Two cardinal theorems, by Vaught, Chang, Keisler and Morley 195
 13. Model complete-theories 208
 14. Skolemization 217

Chapter 2. Abstract Elementary Classes 223
 Introduction 223
 1. Abstract Classes 225
 2. Abstract Elementary Classes 241
 3. The major open questions concerning AEC 255
 4. Shelah’s presentation Theorem and 2-categories 257
 5. Basic Examples 265
 6. PC-classes and omitting types 270
 7. $I(\aleph_0, \mathcal{K}) = I(\aleph_1, \mathcal{K}) = 1 \implies \mathcal{K}_{\aleph_2} \neq \emptyset$ 289
 8. Categoricity in \aleph_1 for AECs is not absolute 296
 9. Random power set in higher order 310
 10. Ext$_K(G, \mathbb{Z})$ 311
 11. Weak amalgamation 312
 12. Few models imply the amalgamation property 314

Chapter 3. More Fundamentals 319
 Introduction 319
 1. The filter of closed unbounded sets 320
 2. Ultraproducts 332
3. Ehrenfeucht-Fraissé games 346
4. Two applications to algebra 349
5. Non-standard analysis* 355
6. When does a class have a structure theory? Shelah’s thesis 355

Part 2. Galois Theory 357

Chapter 4. Complete types and indiscernibles 359
 Introduction 359
 1. Saturated models 361
 2. The monster model, homogenous and special models 374
 3. Indiscernibles and Ehrenfeucht-Mostowski models 396
 4. Galois types and monster models in Abstract Elementary Classes 415

Chapter 5. More on Types 431
 Introduction 431
 1. Definability and the Lascar group 433
 2. Using models of set theory to establish consistency of a first-order theory 445
 3. Game theoretic characterization of elementary embedding and isomorphism 448
 4. Saturation of ultraproducts 450
 5. Keisler-Shelah’s theorem* 450
 6. More on model complete theories* 451
 7. Shelah’s Generalization of Ehrenfeucht-Mostowski models 452
 8. D(T) as a topological space* 455
 9. The topology of Lascar’s groups 461
 10. More on existence, omitting types, and the completeness theorem 462
 11. The Paris Harrington’s theorem* 467
 12. More on two cardinal theorems* 468
 13. Chang’s conjecture and Jónsson algebras* 472

Chapter 6. Morley’s Theorem 479
 Introduction 479
 1. Dimension in model theory 482
 2. A rank function 484
 3. \(\aleph_0 \)-stability 492
 4. Existence of indiscernibles, non-splitting and cohiers 500
 5. Prime, primary and atomic models 511
 6. Every model is saturated 520
 7. Chang’s Conjecture is true for \(\aleph_0 \)-stable theories 526
 8. Quasi-minimal formulas and an omitting types Theorem 528
 9. Strongly minimal sets and the Baldwin-Lachlan proof 533
 10. Some properties of \(|T|^\omega \)-categorical theories 550
 11. The Baldwin Lachlan proof 555
 12. Keisler’s rank-free proof of Morley’s theorem 558
 13. Morley’s rank and the local rank 564
 14. Some properties of \(\aleph_0 \)-stable theories 566

Chapter 7. Basics of Stability 567
 Introduction 567
 1. Local Types 568
 2. The order dichotomy 573
 3. Sequences of indiscernibles 583
 4. Definability of types in stable theories 590
 5. Many equivalent characterizations of stability 593
Finite model theory arose as an independent field of logic from consideration of problems in theoretical computer science. Basic concepts in this field are finite graphs, databases, computations etc. One of the underlying observations behind the interest in finite model theory is that many of the problems of complexity theory and database theory can be formulated as problems of mathematical logic, provided that we limit ourselves to finite structures. While the objects of study in finite model theory are finite structures, it is often possible to make use of infinite structures in the proofs. W