**Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year**

Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

### 3rd Semester

**Theory:**

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>M (CS) 301</td>
<td>Numerical Methods</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>M302</td>
<td>Mathematics-III</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>EC(EE)301</td>
<td>Analog Electronic circuits</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>EC(EE)302</td>
<td>Digital Electronic circuit</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>EE-301</td>
<td>Electric Circuit theory</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>EE-302</td>
<td>Field theory</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

**Practical / Sessional:**

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>EC(EE)391</td>
<td>Analog &amp; Digital Electronic circuit</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>M (CS )391</td>
<td>Numerical Methods</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>EE-391</td>
<td>Electric Circuit Theory</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>HU-391</td>
<td>Technical report writing and language practice</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

**TOTAL OF SEMESTER:**


### 4th Semester

**Theory:**

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>HU-401</td>
<td>Values and Ethics in Profession</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>PH (EE)-401</td>
<td>Physics-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>EI(EEE)-401</td>
<td>Transducers &amp; sensors</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>CH-401</td>
<td>Basic Environmental Engineering &amp; Elementary Biology</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>EE-401</td>
<td>Electric Machine-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>EE-402</td>
<td>Electrical &amp; Electronic measurement</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

**Practical / Sessional:**

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>PH(EE)-491</td>
<td>Physics-II Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EI(EEE)-491</td>
<td>Transducers &amp; sensors Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EE-491</td>
<td>Electric Machine Lab-I</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>EE-492</td>
<td>Electrical &amp; Electronic measurement Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

**TOTAL OF SEMESTER:**


## Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year

Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

### 5th Semester

**Theory:**

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HU-501</td>
<td>Economics for Engineers</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EEE-501</td>
<td>Electric machine-II</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EEE-502</td>
<td>Power system-I</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>EEE-503</td>
<td>Digital Signal Processing</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>EEE-504</td>
<td>A. Data structure &amp; algorithm</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Computer Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Microprocessor &amp; Microcontroller</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total of theory: 18 18

**Practical / Sessional:**

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EEE-591</td>
<td>Electric machine-II</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>EEE-593</td>
<td>Digital Signal Processing</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>EEE-594</td>
<td>A. Data structure &amp; algorithm</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Computer Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Microprocessor &amp; Microcontroller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EEE-581</td>
<td>Seminar</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total of Practical / Sessional: 12 8

**Total of Semester:** 30 26

---

### 6th Semester

**Theory:**

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per week</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HU-601</td>
<td>Principle of Management</td>
<td>2 0 0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>EEE-601</td>
<td>Power System-II</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>EEE-602</td>
<td>Control System</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>EEE-603</td>
<td>Power Electronics</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>EEE-604</td>
<td>a. Operating System</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Object Oriented Programming &amp; JAVA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Embedded Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EEE-605</td>
<td>a. Power Pant Engineering</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Communication Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Practical / Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per week</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EEE-691</td>
<td>Power System</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>EEE-692</td>
<td>Control System</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>EEE-693</td>
<td>Power Electronics</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>EEE-694</td>
<td>a. Operating System</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Object Oriented Programming &amp; JAVA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Embedded Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total of Practical / Sessional: 12 8

**Total of Semester:** 32 28

Industrial training conducted after 6th Semester.
### Theory:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>EEE-701</td>
<td>VLSI design</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>EEE-702</td>
<td>Digital Communication and network</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>EEE-703</td>
<td>a. Electric Drive</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Utilization of Electric Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Power Plant Instrumentation &amp; Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EEE-704</td>
<td>a. Digital Image processing</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Bio medical instrumentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Non conventional Energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EEE-705</td>
<td>a. Operating system</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Embedded system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. AI &amp; Soft computing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total of theory: 17 17

### Practical / Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>EEE-791</td>
<td>VLSI design</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EEE-792</td>
<td>Digital Communication &amp; Network</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EEE-793</td>
<td>a. Operating system</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Embedded system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. AI &amp; soft computing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EEE-781</td>
<td>Design of Electrical / Electronic Systems</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EEE-782</td>
<td>Seminar on industrial training</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EEE-795</td>
<td>Project part-I</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total of Practical / Sessional: 18 12

TOTAL OF SEMESTER: 18 02 09 35 27
### 8th Semester

#### Theory:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HU-801A</td>
<td>Organizational Behavior</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
| 2       | EEE-801 | a. High Voltage Engineering  
b. Illumination Engineering  
c. Energy management & Audit  
d. FACTS & HVDC transmission | 3 | 0 | 0 | 3 | 3 |
| 3       | EEE-802 | a. Software Engineering  
b. Operation Research  
c. DBMS | 3 | 0 | 0 | 3 | 3 |

**Total of Theory**  
8 8

#### Practical / Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EEE-881</td>
<td>Project -II</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>EEE-882</td>
<td>ELECTRICAL SYSTEMS LABORATORY-II</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>EEE-883</td>
<td>Grand Viva</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Total of Practical / Sessional**  
18 13

**Total of semester**  
26 21
NUMERICAL METHODS  
**Code**: M(CS) 301  
**Contacts**: 2L+1T  
**Credits**: 2  

Approximation in numerical computation: Truncation and rounding errors, Fixed and floating-point arithmetic, Propagation of errors.

Interpolation: Newton forward/backward interpolation, Lagrange’s and Newton’s divided difference Interpolation.

Numerical integration: Trapezoidal rule, Simpson’s 1/3 rule, Expression for corresponding error terms.


**Text Books:**

**References:**
2. Baburam: Numerical Methods, Pearson Education.
4. Soumen Guha & Rajesh Srivastava: Numerical Methods, OUP.
5. Srimanta Pal: Numerical Methods, OUP.

MATHEMATICS  
**Code**: M 302  
**Contacts**: 3L +1T = 4  
**Credits**: 4  

**Note 1:** The entire syllabus has been divided into four modules.  
**Note 2:** Structure of Question Paper  

There will be two groups in the paper:

Group A: Ten questions, each of 2 marks, are to be answered out of a total of 15 questions, covering the entire syllabus.

Group B: Five questions, each carrying 10 marks, are to be answered out of (at least) 8 questions. Students should answer at least one question from each module. [At least 2 questions should be set from each of Modules II & IV.]
At least 1 question should be set from each of Modules I & III. Sufficient questions should be set covering the whole syllabus for alternatives.]

Module I: Fourier Series & Fourier Transform [8L]

Topic: Fourier Series:
(1)
Euler’s Formulae for Fourier Series, Fourier Series for functions of period $2\pi$, Fourier Series for functions of period $2l$, Dirichlet’s conditions, Sum of Fourier series. Examples.
(1)
(2)

Topic: Fourier Transform:
Sub-Topics: Fourier Integral Theorem (statement only), Fourier Transform of a function, Fourier Sine and Cosine Integral Theorem (statement only), Fourier Cosine & Sine Transforms. Fourier, Fourier Cosine & Sine Transforms of elementary functions.
(1)
(1)
Convolution Theorem (statement only), Inverse of Fourier Transform, Examples.
(2)

Module II : Calculus of Complex Variable [13L]

Topic: Introduction to Functions of a Complex Variable.

Sub-Topics: Complex functions, Concept of Limit, Continuity and Differentiability.
(1)
Analytic functions, Cauchy-Riemann Equations (statement only). Sufficient condition for a function to be analytic. Harmonic function and Conjugate Harmonic function, related problems.
(1)
(1)

Topic: Complex Integration.

Sub-Topics: Concept of simple curve, closed curve, smooth curve & contour. Some elementary properties of complex Integrals. Line integrals along a piecewise smooth curve. Examples.
(2)
Cauchy’s theorem (statement only). Cauchy-Goursat theorem (statement only). Examples.
(1)
Cauchy’s integral formula, Cauchy’s integral formula for the derivative of an analytic function, Cauchy’s integral formula for the successive derivatives of an analytic function. Examples.
(2)
Taylor’s series, Laurent’s series. Examples
(1)

Topic: Zeros and Singularities of an Analytic Function & Residue Theorem.


Sub-Topics: Zero of an Analytic function, order of zero, Singularities of an analytic function. Isolated and non-isolated singularity, essential singularities. Poles: simple pole, pole of order m. Examples on determination of singularities and their nature. (1)

Residue, Cauchy’s Residue theorem (statement only), problems on finding the residue of a given function, evaluation of definite integrals: \( \int_0^\infty \frac{\sin x}{x} \, dx \), \( \int_0^{2\pi} \frac{d\theta}{a+b\cos \theta+c\sin \theta} \), \( \int_0^1 \frac{P(z)}{Q(z)} \, dz \) (elementary cases, \( P(z) \) & \( Q(z) \) are polynomials of 2\(^{nd}\) order or less). (2)

Topic: Introduction to Conformal Mapping.

Sub-Topics: Concept of transformation from z-plane to w-plane. Concept of Conformal Mapping. Idea of some standard transformations. Bilinear Transformation and determination of its fixed point. (1)

Module III: Probability [8L]

Topic: Basic Probability Theory

Sub-Topics: Classical definition and its limitations. Axiomatic definition. Some elementary deduction: i) \( P(\emptyset)=0 \), ii) \( 0 \leq P(A) \leq 1 \), iii) \( P(A')=1-P(A) \) etc. where the symbols have their usual meanings. Frequency interpretation of probability. (1)

Addition rule for 2 events (proof) & its extension to more than 2 events (statement only). Related problems. Conditional probability & Independent events. Extension to more than 2 events (pairwise & mutual independence). Multiplication Rule. Examples. Baye’s theorem (statement only) and related problems. (3)


Sub-Topics: Definition of random variable. Continuous and discrete random variables. Probability density function & probability mass function for single variable only. Distribution function and its properties (without proof). Examples. Definitions of Expectation & Variance, properties & examples. (2)

Some important discrete distributions: Binomial & Poisson distributions and related problems.
Some important continuous distributions: Uniform, Exponential, Normal distributions and related problems. Determination of Mean & Variance for Binomial, Poisson & Uniform distributions only. (2)

Module IV: Partial Differential Equation (PDE) and Series solution of Ordinary Differential Equation (ODE) [13L]

Topic: Basic concepts of PDE.

Sub-Topics: Origin of PDE, its order and degree, concept of solution in PDE. Introduction to different methods of solution: Separation of variables, Laplace & Fourier transform methods. (1)

Topic: Solution of Initial Value & Boundary Value PDE’s by Separation of variables, Laplace & Fourier transform methods.

Sub-Topics:
PDE I: One dimensional Wave equation. (2)
PDE II: One dimensional Heat equation. (2)
PDE III: Two dimensional Laplace equation. (2)
Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year

Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

Topic: Introduction to series solution of ODE.

Sub-Topics: Validity of the series solution of an ordinary differential equation.
General method to solve $P_0 y'' + P_1 y' + P_2 y = 0$ and related problems. (2)

Topic: Bessel’s equation.

Sub-Topics: Series solution, Bessel function, recurrence relations of Bessel’s Function of first kind. (2)

Topic: Legendre’s equation.

Sub-Topics: Series solution, Legendre function, recurrence relations and orthogonality relation. (2)

TOTAL LECTURES : 42

Text Books:
3. Das N.G.: Statistical Methods, TMH.

References:
5. Ramana B.V.: Higher Engineering Mathematics, TMH.

ELECTRIC CIRCUIT THEORY
EE-301

Credit: 4 Contact: 3L+1T

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Continuous &amp; Discrete, Fixed &amp; Time varying, Linear and Nonlinear, Lumped and Distributed, Passive and Active networks and systems. Independent &amp; Dependent sources, Step, Ramp, Impulse, Sinusoidal, Square, Saw tooth signals.</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Coupled circuits: Magnetic coupling, Polarity of coils, Polarity of induced voltage, Concept of Self and Mutual inductance, Coefficient of coupling, Modeling of coupled circuits, Solution of problems.</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Fourier method of waveform analysis: Fourier series and Fourier Transform (in continuous domain only). Application in circuit analysis, Solution of Problems</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Network equations: Formulation of network equations, Source transformation, Loop variable analysis, Node variable analysis, Network theorem: Superposition, Thevenin’s, Norton’s &amp; Maximum power transfer theorem. Millman’s theorem and its application in three phase unbalanced circuit analysis. Solution of Problems with DC &amp; AC sources.</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Graph theory and Networks equations: Concept of Tree, Branch, Tree link,</td>
<td>4</td>
</tr>
</tbody>
</table>
## Field Theory

**Module 1**

**Introduction**: Co-ordinate systems and transformation, Cartesian coordinates, Circular cylindrical coordinates, Spherical coordinates & their transformation. Differential length, area and volume in different coordinate systems. Solution of problems

<table>
<thead>
<tr>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
</tbody>
</table>

**Module 2**

**Introduction to Vector calculus**: DEL operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Stokes theorem, Laplacian of a scalar, Classification of vector fields, Helmholtz’s theorem. Solution of problems

<table>
<thead>
<tr>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Vector calculus</td>
<td>3</td>
</tr>
</tbody>
</table>

**Module 3**

**Electrostatic field**: Coulomb’s law, field intensity, Gauss’s law, Electric potential and Potential gradient, Relation between E and V, an Electric dipole and flux lines. Energy density in electrostatic field. Boundary conditions: Dielectric-dielectric, Conductor –dielectric, Conductor-free space. Poisson’s and Laplace’s equation, General procedure for solving Poisson’s and Laplace’s equation. Solution of problems

<table>
<thead>
<tr>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic field</td>
<td>8</td>
</tr>
</tbody>
</table>
# Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year

Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

## Magneto Static Fields
- Biot-Savart law, Ampere’s circuit law, Magnetic flux density, Magnetic static and Vector potential, Forces due to magnetic field, Magnetic torque and moments, Magnetisation in material, Magnetic boundary condition, Inductor and Inductances, Magnetic energy, Force on magnetic material. Solution of problems

## Electromagnetic Fields
- Faraday’s law, Transformer and motional emf, Displacement current, Maxwell’s equations, Time varying Potential, Time harmonic fields. Solution of problems

## Electromagnetic Wave Propagation
- Wave equation, Wave propagation in lossy dielectric, Plane waves in loss less dielectric, Plane wave in free space, Plane wave in good conductor, Skin effect, Skin depth, Power & Poynting vector, Reflection of a plane wave at normal incidence, reflection of a plane wave at oblique incidence, Polarisation. Solution of problems

## Transmission Line

### Text Books:

### Reference Books:

---

### DIGITAL ELECTRONICS CIRCUITS

**EC (EE)-302**

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data and number system: Binary, Octal and Hexadecimal representation and their conversion, BCD, ASCII, EBDIC, Gray codes and their conversion, Signed binary numbers representation with 1’s and 2’s complement methods, Binary arithmetic.</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Boolean algebra: Various logic gates and their truth tables and circuits, Representation in SOP and POS forms, Minimization of logic expressions by algebraic method, K-map method.</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Combinational circuits: Adder and sub tractor circuit, Circuit of Encoder, Decoder, Comparator, Multiplexer, De-Multiplexer and parity Generator.</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Memory systems: RAM, ROM, EPROM, EEROM</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Sequential circuits: Basic memory elements, S-R, J-K, D, and T Flipflop, various types of Registers, Counters &amp; their design, Irregular counter, State table &amp; State transition diagram, Sequential circuit design methodology.</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Different types of A/D and D/A conversion techniques.</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Logic families: TTL, ECL, MOS &amp; CMOS, their operation and specification.</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

### Text Books:
3. Fundamental of Digital Circuits, A. Anand Kumar, PHI.

Reference Books:
1. Digital Logic Design, Morris Mano, PHI.

ANALOG ELECTRONIC CIRCUITS
EC (EE)-301

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Filters &amp; Regulators: Capacitor filters, ( \pi )-section filter, ripple factor, series and shunt voltage regulator, percentage regulation, Concept of SMPS.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Transistor biasing &amp; stability: Q point, Self Bias-CE, Compensation techniques, h-model of Transistor, Expression of voltage gain, current gain, input &amp; output impedance, Trans-resistance &amp; Trans-conductance, Emitter follower circuits, High frequency model of Transistor.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Transistor amplifier: RC coupled amplifier, Function of all components, Equivalent circuit, derivation of voltage gain, Current gain, Input impedance &amp; output impedance, Frequency response characteristics, Lower &amp; upper half frequencies, Bandwidth, Concept of Wide band amplifier.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Feedback amplifier &amp; Oscillators: Concept of Feed back, Negative &amp; Positive feedback, Voltage/Current, Series/Shunt feedback, Barkhausen criterion, Colpit , Hartley’s, Phase shift, Wien bridge, &amp; Crystal oscillators.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Operational amplifier: Ideal OPAMP, Differential amplifier, Constant current source (Current mirror etc), Level shifter, CMRR, Open &amp; closed loop circuits, importance of feedback loop (positive &amp; negative), inverting &amp; non-inverting amplifiers, Voltage follower/Buffer circuits.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Application of Operational amplifiers: Adder, Integrator &amp; Differentiator, Comparator, Schmitt Trigger, Instrumentation Amplifier, Log &amp; Antilog amplifier, Trans-conductance multiplier, Precision rectifier, Voltage to current &amp; Current to voltage converter.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Power amplifier: Class A, B, AB, C, Conversion efficiency, Tuned amplifier.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Multivibrator: Monostable, Bistable multivibrator, Monostable &amp; Astable operation using 555 timer.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Special function circuits: VCO &amp; PLL</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Text Books:
1. Microelectronic Circuits, Sedra & Smith, Oxford University Press.
3. Electronic devices & Circuits, Balbir Kumar & Shail B. Jain, PHI.
4. Op-amps and Linear IC’s, R.A. Gayakwad, PHI.

Reference Books:
4. Operational Amplifier & Linear IC’s, Bell, Oxford University Press.
Practical

ELECTRIC CIRCUIT THEORY LABORATORY
EE-391

Credit: 2        Contact: 3

1. Transient response of R-L and R-C network: simulation with PSPICE /Hardware
2. Transient response of R-L-C series and parallel circuit: Simulation with PSPICE/ Hardware
3. Determination of Impedance (Z) and Admittance (Y) parameter of two port network: Simulation / Hardware.
5. Frequency response of BP and BR filters: Simulation /Hardware.
6. Generation of Periodic, Exponential, Sinusoidal, Damped Sinusoidal, Step, Impulse, Ramp signal using MATLAB in both discrete and analog form.
7. Determination of Laplace transform and Inverse Laplace transform using MATLAB.
8. Amplitude and Phase spectrum analysis of different signals using MATLAB.
9. Verification of Network theorem using SPICE

NUMERICAL METHODS
Code : M(CS) 391
Credits :1

1. Assignments on Newton forward /backward, Lagrange’s interpolation.
2. Assignments on numerical integration using Trapezoidal rule, Simpson’s 1/3 rule, Weddle’s rule.
3. Assignments on numerical solution of a system of linear equations using Gauss elimination and Gauss-Seidel iterations.
4. Assignments on numerical solution of Algebraic Equation by Regular-falsi and Newton Raphson methods.
5. Assignments on ordinary differential equation: Euler’s and Runge-Kutta methods.
6. Introduction to Software Packages: Matlab / Scilab / Labview / Mathematica.

ELECTRIC CIRCUIT THEORY LABORATORY
EC (EE)-391

Credit: 2        Contact: 3

1. Study of Ripple and Regulation characteristics of full wave rectifier with and without capacitor filter.
2. Study of Zener diode as voltage regulator.
3. Construction of two stage R-C coupled amplifier & study of its gain and Bandwith.
5. Realisation V-I & I-V converter using Operational Amplifier.
7. Study of DAC & ADC
8. Realisation of basic gates using Universal logic gates.
10. Design of Combinational circuit for BCD to decimal conversion to drive 7-segment display using Multiplexer.

PAPER NAME: TECHNICAL REPORT WRITING & LANGUAGE LABORATORY PRACTICE
PAPER CODE: HU 381
CONTACT: 1L+2P
CREDIT: 2

Guidelines for Course Execution:

Objectives of this Course: This course has been designed:
1. To inculcate a sense of confidence in the students.
2. To help them become good communicators both socially and professionally.
3. To assist them to enhance their power of Technical Communication.

Detailed Course Outlines:
A. Technical Report Writing:
   2L+6P
   1. Report Types (Organizational / Commercial / Business / Project)
   2. Report Format & Organization of Writing Materials
   3. Report Writing (Practice Sessions & Workshops)

B. Language Laboratory Practice

1. Introductory Lecture to help the students get a clear idea of Technical Communication & the need of Language Laboratory
   Practice Sessions 2L

2. Conversation Practice Sessions: (To be done as real life interactions)
   2L+4P
   a) Training the students by using Language Lab Device/Recommended Texts/cassettes/cd’s to get their Listening Skill & Speaking Skill honed
   b) Introducing Role Play & honing over all Communicative Competence

3. Group Discussion Sessions:
   2L+6P
   a) Teaching Strategies of Group Discussion
   b) Introducing Different Models & Topics of Group Discussion
   c) Exploring Live/Recorded GD Sessions for mending students’ attitude/approach & for taking remedial measure

Interview Sessions; 2L+6P
   a) Training students to face Job Interviews confidently and successfully
   b) Arranging Mock Interviews and Practice Sessions for integrating Listening Skill with Speaking Skill in a formal situation for effective communication

4. Presentation:
   2L+6P
   a) Teaching Presentation as a skill
   b) Strategies and Standard Practices of Individual/Group Presentation
   c) Media & Means of Presentation: OHP/POWER POINT/ Other Audio-Visual Aids

5. Competitive Examination:
   2L+2P
   a) Making the students aware of Provincial/National/International Competitive Examinations
   b) Strategies/Tactics for success in Competitive Examinations
   c) SWOT Analysis and its Application in fixing Target
Books – Recommended:
Nira Konar: English Language Laboratory: A Comprehensive Manual
PHI Learning, 2011
Pearson Education (W.B. edition), 2011

References:
Adrian Duff et. al. (ed.): Cambridge Skills for Fluency
A) Speaking (Levels 1-4 Audio Cassettes/Handbooks)  
B) Listening (Levels 1-4 Audio Cassettes/Handbooks)
Cambridge University Press 1998
Mark Hancock: English Pronunciation in Use
4 Audio Cassettes/CD'S OUP 2004

Fourth Semester
Theory

VALUES & ETHICS IN PROFESSION
HU-401
Contracts: 3L
Credits- 3

Science, Technology and Engineering as knowledge and as Social and Professional Activities

Effects of Technological Growth:
Rapid Technological growth and depletion of resources, Reports of the Club of Rome. Limits of growth: sustainable development
Energy Crisis: Renewable Energy Resources
Environmental degradation and pollution. Eco-friendly Technologies. Environmental Regulations, Environmental Ethics
Appropriate Technology Movement of Schumacher; later developments
Technology and developing notions. Problems of Technology transfer, Technology assessment impact analysis.

Ethics of Profession:
Engineering profession: Ethical issues in Engineering practice, Conflicts between business demands and professional ideals. Social and ethical responsibilities of Technologists. Codes of professional ethics.
Whistle blowing and beyond, Case studies.

Profession and Human Values:
Values Crisis in contemporary society
Nature of values: Value Spectrum of a good life
Psychological values: Integrated personality; mental health
Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year
Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

Societal values: The modern search for a good society, justice, democracy, secularism, rule of law, values in Indian Constitution.
Aesthetic values: Perception and enjoyment of beauty, simplicity, clarity
Moral and ethical values: Nature of moral judgements; canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility.

Books:

PHYSICS-II
PH (EE)-401  4:Physics
Contacts  : 3L + 1T
Credits : 4

<table>
<thead>
<tr>
<th>Topic</th>
<th>No of periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module-I</td>
<td></td>
</tr>
<tr>
<td>Quantum mechanics:</td>
<td>6</td>
</tr>
<tr>
<td>• Concept of probability and probability density, operator, Commutator, Formulation of quantum mechanics and Basic postulates, Operator correspondence, Time dependent Schrödinger’s equation, formulation of time independent Schrödinger’s equation by method of separation of variables, Physical interpretation of wave function ( \Psi ) (normalization and probability interpretation), Expectation values, Application of Schrödinger equation-Particle in an infinite square well potential (1-D and 3-D potential well), Discussion on degenerate levels.</td>
<td>10</td>
</tr>
<tr>
<td>Module-II</td>
<td></td>
</tr>
<tr>
<td>Statistical mechanics:</td>
<td>4</td>
</tr>
<tr>
<td>• Concept of energy levels and energy states. Microstates, Macrostates and thermodynamic probability, equilibrium macrostate. MB, FD, BE statistics (no deduction necessary), fermions, bosons (definitions in terms of spin, examples), physical significance and application, classical limits of quantum statistics. Fermi distribution at zero and non –zero temperature.</td>
<td></td>
</tr>
<tr>
<td>Module-III</td>
<td></td>
</tr>
<tr>
<td>Dielectric Properties:</td>
<td>3</td>
</tr>
<tr>
<td>• Dielectric Material: Concept of Polarization, the relation between D, E and P, Polarizability, Electronic, Ionic, Orientation &amp; Space charge polarization, behavior of Dielectric under alternating field, Dielectric losses.</td>
<td></td>
</tr>
<tr>
<td>The Magnetic properties:</td>
<td>4</td>
</tr>
<tr>
<td>Module-IV</td>
<td></td>
</tr>
<tr>
<td>Crystal structure</td>
<td>1</td>
</tr>
<tr>
<td>• Crystal structure- Bravais lattice, Miller indices</td>
<td>2</td>
</tr>
<tr>
<td>• Crystal diffraction (qualitative), Bragg's law and reciprocal lattice,Brillouin zone. (Qualitative description)</td>
<td>2</td>
</tr>
<tr>
<td>• Free electron theory of metal – calculation of Fermi energy, density of states.</td>
<td>3</td>
</tr>
<tr>
<td>• Band theory of solids- Bloch theorem, Kronig Penny model.</td>
<td>3</td>
</tr>
</tbody>
</table>
**Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year**

Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

- Electronic conduction in solids-Drude’s theory, Boltzmann equation, Wiedemann Frantz law.
- Semiconductor-Band structure, concept of electron and holes, Fermi level, density of states.

### Text Books:
1. Perspectives of Modern Physics: A. Baiser
5. Fundamentals of Physics (Vol. III): Haiday, Resnick & Krane
   b) R.G. Takwal & P.S. Puranic
8. Quantum Mechanics: a) Eisberg & Resnic
   b) A.K. Ghatak & S. Lokanathan
   c) S.N. Ghoshal
   b) Avijit Lahiri
   c) Evelyn Guha
10. Solid State Physics: a) A.J. Dekker
    b) C. Kittel
    c) Aschroft & Mermin
    d) S.O. Pillai

### Module-I

**TRANSDUCERS & SENSORS**

<table>
<thead>
<tr>
<th>EI (EEE)-401</th>
<th>Credit-3</th>
<th>3L+1T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition, principle of sensing &amp; transduction, classification</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mechanical and Electromechanical sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Resistive (potentiometric type): Forms, material, resolution, accuracy, sensitivity.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>• Strain gauge: Theory, type, materials, design consideration, sensitivity, gauge factor, variation with temperature, adhesive, rosettes.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>• Inductive sensor: common types- Reluctance change type, Mutual inductance change type, transformer action type, Magnetostriuctive type, brief discussion with respect to material, construction and input output variable, Ferromagnetic plunger type, short analysis.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>• LVDT: Construction, material, output input relationship, I/O curve, discussion.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>• Proximity sensor.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Module-II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Capacitive sensors: variable distance-parallel plate type, variable area-parallel plate, serrated plate/teeth type and cylindrical type, variable dielectric constant type, calculation of sensitivity.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>• Stretched diaphragm type: microphone, response characteristics.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>• Piezoelectric element: piezoelectric effect, charge and voltage co-efficient, crystal model, materials, natural &amp; synthetic type, their comparison, force &amp; stress sensing, ultrasonic sensors.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Module-III</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thermal sensors:
- Material expansion type: solid, liquid, gas & vapor
- Resistance change type: RTD materials, tip sensitive & stem sensitive type, Thermister material, shape, ranges and accuracy specification.
- Thermoemf sensor: types, thermoelectric power, general consideration,
- Junction semiconductor type IC and PTAT type.
- Radiation sensors: types, characteristics and comparison.
- Pyroelectric type

Module-IV

Magnetic sensors:
- Sensor based on Villari effect for assessment of force, torque, proximity, Wiedemann effect for yoke coil sensors, Thomson effect, Hall effect, and Hall drive, performance characteristics.
- Radiation sensors: LDR, Photovoltaic cells, photodiodes, photo emissive cell-types, materials, construction, response.
- Geiger counters, Scintillation detectors.

Introduction to smart sensors

Text books:

CH401: Basic Environmental Engineering & Elementary Biology

Contacts : 3L
Credits : 3

General
Basic ideas of environment, basic concepts, man, society & environment, their interrelationship.

1L
Mathematics of population growth and associated problems, Importance of population study in environmental engineering, definition of resource, types of resource, renewable, non-renewable, potentially renewable, effect of excessive use vis-à-vis population growth, Sustainable Development.

2L
Materials balance: Steady state conservation system, steady state system with non conservative pollutants, step function.

1L
Environmental degradation: Natural environmental Hazards like Flood, earthquake, Landslide-causes, effects and control/management; Anthropogenic degradation like Acid rain-cause, effects and control.
Nature and scope of Environmental Science and Engineering.

2L

Ecology
Elements of ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystem- components types and function.

1L
Structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundar ban); Food chain [definition and one example of each food chain], Food web.  

Biogeochemical Cycle- definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur].  

Biodiversity- types, importance, Endemic species, Biodiversity Hot-spot, Threats to biodiversity, Conservation of biodiversity.  

Air pollution and control  
Atmospheric Composition: Troposphere, Stratosphere, Mesosphere, Thermosphere, Tropopause and Mesopause.  

Energy balance: Conductive and Convective heat transfer, radiation heat transfer, simple global temperature model [Earth as a black body, earth as albedo], Problems.  

Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Earth’s heat budget.  

Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion).  

Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.  

Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant.  

Sources and effect of different air pollutants- Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN.  

Smog, Photochemical smog and London smog.  

Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green house gases, effect of ozone modification.  

Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP, cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference).  

Water Pollution and Control
Hydrosphere, Hydrological cycle and Natural water.
Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pesticides, volatile organic compounds. 2L
River/Lake/ground water pollution: River: DO, 5 day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river[deoxygenation, reaeration], COD, Oil, Greases, pH. 2L
Lake: Eutrophication [Definition, source and effect]. 1L
Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only) 1L
Standard and control: Waste water standard [BOD, COD, Oil, Grease].
Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening]
Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor, Activated sludge, sludge treatment, oxidation ponds] tertiary treatment definition. 2L
Water pollution due to the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, and Arsenic 1L

Land Pollution
Lithosphere; Internal structure of earth, rock and soil 1L
Solid Waste: Municipal, industrial, commercial, agricultural, domestic, pathological and hazardous solid wastes; Recovery and disposal method- Open dumping, Land filling, incineration, composting, recycling. Solid waste management and control (hazardous and biomedical waste). 2L

Noise Pollution
Definition of noise, effect of noise pollution, noise classification [Transport noise, occupational noise, neighbourhood noise] 1L
Definition of noise frequency, noise pressure, noise intensity, noise threshold limit value, equivalent noise level, $L_{10}$ (18 hr Index), $L_{eq}$. 1L
Noise pollution control. 1L

Environmental Management:
Environmental impact assessment, Environmental Audit, Environmental laws and protection act of India, Different international environmental treaty/ agreement/ protocol. 2L

References/Books
### ELECTRIC MACHINE-I

**EE-401**  
**Credit:** 4  
**3L+1T**

<table>
<thead>
<tr>
<th>Topic</th>
<th>No of periods</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Module-I</strong></td>
<td></td>
</tr>
<tr>
<td>• Electromechanical Energy Conversion Principle, Singly Excited Magnetic System and Doubly Excited Magnetic system. Physical concept of torque production; Electromagnetic torque and Reluctance torque.</td>
<td>2</td>
</tr>
<tr>
<td>• Concept of General terms pertaining to Rotating Machines: Electrical &amp; Mechanical degree, Pole pitch, Coil, Generated EMF in full pitched coil, Generated EMF in a short pitched coil, EMF polygon, Distribution factor, Pitch factor. MMF produced by Distributed Windings, MMF of a coil, MMF of single phase distributed Winding, MMF waveform of Commutator machines.</td>
<td>2</td>
</tr>
<tr>
<td><strong>Module-II</strong></td>
<td></td>
</tr>
<tr>
<td><strong>DC Machines:</strong></td>
<td></td>
</tr>
<tr>
<td>• EMF generated in the armature. Methods of Excitation, Armature reaction &amp; its effect in the performance, Methods of decreasing the effects of Armature reaction, Effect of Brush shift.</td>
<td>3</td>
</tr>
<tr>
<td>• Commutation process, Resistance commutation, Delayed commutation, Voltage commutation, Improvement of Commutation.</td>
<td>2</td>
</tr>
<tr>
<td>• Operating Characteristics of DC Generators: Separately Excited generators, Shunt Generators, Series Generators and Compound Generators.</td>
<td>2</td>
</tr>
<tr>
<td>• Torque equation of D.C motor, Operating Characteristics of Shunt, Series &amp; Compound motors.</td>
<td>2</td>
</tr>
<tr>
<td>• Losses and efficiency of DC machines, Hopkinson’s and Swinburne’s test.</td>
<td>2</td>
</tr>
<tr>
<td>• D.C Machine application: Generator application, Motor application</td>
<td>1</td>
</tr>
<tr>
<td><strong>Module-III</strong></td>
<td></td>
</tr>
<tr>
<td><strong>3-Phase Induction machine:</strong></td>
<td></td>
</tr>
<tr>
<td>• Induction motor as a Transformer, Flux and MMF phasors in Induction motors, Equivalent circuit, Performance equations, Induction motor phasor diagram Torque-slip characteristic, Power slip characteristic, Determination of equivalent circuit parameters.</td>
<td>1</td>
</tr>
<tr>
<td>• Methods of starting of squirrel Cage and Wound rotor Motors.</td>
<td>2</td>
</tr>
<tr>
<td>• Speed control of Induction motor Polarity Test, Application of Polyphase Induction motor.</td>
<td>1</td>
</tr>
<tr>
<td><strong>Module-IV</strong></td>
<td></td>
</tr>
<tr>
<td><strong>3-Phase Transformer:</strong></td>
<td></td>
</tr>
<tr>
<td>• Determination of polarity and connections (star/star, star/delta, delta/star, star/ zigzag, delta/ zigzag, open delta), Phasor groups.</td>
<td>3</td>
</tr>
<tr>
<td>• Effect of unbalanced loading, Production of Harmonics in Transformer and its suppression,</td>
<td>1</td>
</tr>
</tbody>
</table>
### Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year

Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

- 3 phase to 2 phase transformation, Scott connection, 3 phase to 6 phase connections, Double star and Double delta,  
- 3 winding transformer: Parameter estimation, application,  
- Parallel operation of Transformers, Introduction to Tap changing transformer and its function,  
- **Special Transformers:** Potential transformer, Current transformer, Pulse transformer, Audio frequency transformer, Grounding transformer, Pulse transformer.

### Numerical Problems to be solved in the tutorial classes.

### Text Books:


### Reference Books:

2. Electrical Machines, R.K. Srivastava, Cengage Learning

---

### ELECTRICAL & ELECTRONIC MEASUREMENT

**EE-402**  
**Credit:** 3  
**3L+1T**

<table>
<thead>
<tr>
<th>Topic</th>
<th>No of periods</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Module-I</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Measurements:</strong></td>
<td></td>
</tr>
<tr>
<td>Method of measurement, Measurement system, Classification of instruments, Definition of accuracy, Precision, Resolution, Speed of response, Error in measurement, Classification of errors, loading effect due to shunt and series connected instruments.</td>
<td>3</td>
</tr>
<tr>
<td><strong>Analog meters:</strong></td>
<td></td>
</tr>
<tr>
<td>General features, Construction, Principle of operation and torque equation of Moving coil, Moving iron, Electrodynamometer, Induction instruments</td>
<td>3</td>
</tr>
<tr>
<td>Principle of operation of the Electrostatic, Thermoelectric, Rectifier type instruments, Extension of instrument ranges and multipliers.</td>
<td>3</td>
</tr>
<tr>
<td><strong>Module-II</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Instrument transformer:</strong></td>
<td></td>
</tr>
<tr>
<td>Disadvantage of shunt and multipliers, Advantage of Instrument transformers, Principle of operation of Current &amp; Potential transformer, errors.</td>
<td>4</td>
</tr>
<tr>
<td><strong>Measurement of Power:</strong></td>
<td></td>
</tr>
<tr>
<td>Principle of operation of Electrodynamic &amp; Induction type wattmeter. Wattmeter errors.</td>
<td>3</td>
</tr>
<tr>
<td><strong>Measurement of resistance:</strong></td>
<td></td>
</tr>
<tr>
<td>Measurement of medium, low and high resistances, Megger.</td>
<td>4</td>
</tr>
</tbody>
</table>

---

21
Syllabus for B.Tech (Electrical & Electronics Engineering) Up to Fourth Year
Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

Measurement of Energy:
- Construction, theory and application of AC energy meter, testing of energy meters.

Potentiometer:
- Principle of operation and application of Crompton’s DC potentiometer, Polar and Co-ordinate type AC potentiometer. Application.

AC Bridges:
- Measurement of Inductance, Capacitance and frequency by AC bridges.

Module-IV

Cathode ray oscilloscope (CRO):
- Measurement of voltage, current, frequency & phase by oscilloscope. Frequency limitation of CRO. Sampling and storage oscilloscope, Double beam CRO.

Electronic Instruments:

Sensors & Transducers:
- Introduction to sensors & Transducers, Strain gauge, LVDT, Temperature transducers, Flow measurement using magnetic flow measurement.

Numerical Problems to be solved in the tutorial classes.

Text Books:

Reference Books:

Practical

Physics Lab-2
Code: PH(EE)491
Contacts: (3P)
Credit: (2)

1. Determination of dielectric constant of a given dielectric material.
2. Determination of thermo electric power at a certain temperature of a given thermocouple.
3. Determination of specific charge (e/m) of electron by J.J. Thompson’s method.
4. Determination of Planck constant using photocell.
5. Determination of Lande’g factor using Electron spin resonance spectrometer.
6. Determination of Stefan’s radiation constant.
7. Verification of Bohr’s atomic orbital theory through Frank-Hertz experiment.
10. Determination of Band gap of semiconductor.
11. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.
TRANSDUCERS & SENSORS LABORATORY

EI (EEE)-491 Credit-2 3P

1. Study of two channel Voltage to Current transmitter (V-I Transmitter)
2. Study of two channel I-V receiver (Converter)
3. Temperature measurement using AD590 Semiconductor temperature sensor.
4. Displacement measurement by Capacitive Transducers.
5. Pressure & Displacement measurement by Linear Variable Displacement Transducers (LVDT).
6. Study of load cell. (To study the load cell behavior for tensile & compressive load)
7. Torque measurement by Strain Gauge Transducers.
10. Relative Humidity measurement using Capacitive Transducer.
11. Displacement measurement by Magnetic Bi-Polar Digital Position Sensor (using Hall Effect)
13. Study of LDR
14. Study of Photo Diodes & Photo Voltaic cells.

ELECTRIC MACHINE LABORATORY-I

EE-491 Credit: 2 3P

1. Study of the characteristics of a separately excited DC generator.
2. Study of the characteristics of a DC motor
3. Study of methods of speed control of DC motor
4. Study of the characteristics of a compound DC generator (short shunt).
7. Polarity test on a single phase transformer & study of different connections of three phase transformer.

Reference Books:

ELECTRIC AND ELECTRONIC MEASUREMENT LABORATORY

EE-492 Credit: 2 3P

List of Experiments:
1. Instrument workshop- Observe the construction of PMMC, Dynamometer, Electrothermal and Rectifier type of instruments, Oscilloscope and Digital multimeter.
2. Calibrate moving iron and electrodynamometer type ammeter/voltmeter by potentiometer.
3. Calibrate dynamometer type wattmeter by potentiometer.
4. Calibrate AC energy meter.
9. Measurement of Inductance by Anderson bridge
10. Measurement of capacitance by De Sauty Bridge.

SEMESTER – V

Theory

Economics for Engineers
HU-501
Contracts: 3L
Credits- 3

Module-I


Module-II


Module-III

5. Inflation And Price Change – Definition, Effects, Causes, Price Change with Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price Indexes In Engineering Economic Analysis, Cash Flows that inflate at different Rates.

Module-IV


Readings
2. Donald Newnan, Ted Eschambach, Jerome Lavelle : Engineering Economics Analysis, OUP
5. R.Paneer Selvan: Engineering Economics, PHI
Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year
Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

ELECTRIAL MACHINES-II
EEE-501
Credit: 4       Contact: 3L+1T

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single Phase Induction Motor: Construction, Double revolving field theory, Cross field theory, Starting methods, Speed-Torque characteristics, Phasor diagram, Condition of Maximum torque, Determination of equivalent circuit parameters, Testing of Single phase motors, Applications. Single phase AC series motor, Compensated and uncompensated motors.</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Synchronous machines: Construction, Types, Excitation systems, Generator &amp; Motor modes, Armature reaction, Theory for salient pole machine, Two reaction theory, Voltage regulation (EMF, MMF, ZPF), Operating characteristics of Alternators and their rating, Power angle characteristics of Synchronous machines, Parallel operation of Alternators, Synchronous machine connected to infinite bus, effect of change of excitation and speed of prime mover, Starting of Synchronous motor, V-curve, Damper winding, Hunting, Short circuit transients, Applications.</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Special Electromechanical devices: Principle and construction of switched Reluctance motor, Permanent magnet machines, Brushless DC machines, Hysteresis motor, Stepper motor, Tacho generators, Synchros &amp; resolvers, AC servo motors, Principle, construction and operational characteristics of Induction generator &amp; linear Induction motor.</td>
<td>10</td>
</tr>
</tbody>
</table>

Numerical problems to be solved in the tutorial classes.

Text Books:
2. Electrical Machines, Nagrath & Kothary, TMH
3. Electrical Machines, Theory & Applications, M.N. Bandyopadhyay, PHI

Reference Books:
2. Electric Machinery & Transformees, Irving L. Kosow, PHI
4. Electrical Machines, R.K. Srivastava, Cengage Learning

ELECTRIAL MACHINES-II LABORATORY
EEE-591
Credit: 2  3P

1. Different methods of starting of a 3 phase Cage Induction Motor & their comparison[DOL, Auto transformer & Star-Delta]
2. Speed control of 3 phase squirrel cage induction motor by different methods & their comparison [voltage control & frequency control].
3. Speed control of 3 phase slip ring Induction motor by rotor resistance control.
4. Determination of regulation of Synchronous machine by (a) Potier reactance method.
   (b) Synchronous reactance method.
6. Load test on single phase Induction motor to obtain the performance characteristics.
7. To determine the direct axis resistance \(X_d\) & quadrature reactance \(X_q\) of a 3 phase synchronous machine by slip test.
8. Load test on wound rotor Induction motor to obtain the performance characteristics.
9. To make connection diagram to full pitch & fractional slot winding of 18 slot squirrel cage Induction motor for 6 poles & 4 pole operation.
10. To study the performance of Induction generator.
### POWER SYSTEM-I

**EEE-502**

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L+1T</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Performance of lines: Short, medium (nominal 7E, T) and long lines and their representation. A.B.C.D constants, Voltage regulation, Ferranti effect, Power equations and line compensation, Power Circle diagrams.</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

### MICROPROCESSOR & MICROCONTROLLER

**EEE-504C**

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Computer architecture: Architecture of a typical Microprocessor, Bus configuration, The CPU module, ROM &amp; RAM families, Introduction to assembly language &amp; machine language programming, Instruction set of typical microprocessor (e.g. 8085), Subroutine &amp; stack, Timing diagram, Memory Interfacing, Interfacing input output- port, Interrupt &amp; interrupt handling, Serial &amp; parallel data transfer scheme, Programmed &amp; interrupt driven data transfer, Direct memory access, Programmable peripheral devices, Programmable interval timer, Analog input-output using AD &amp; DA converter.</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assembly language programme of a typical Microprocessor: Use of compilers, assembler, linker &amp; debugger.</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

#### Text Books:
2. Power System Engineering, Nagrath & Kothery, TMH
3. Elements of power system analysis, C.L. Wodlwa, New Age International.

#### Reference Books:
Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year
Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

2

3  **Basic 16 bit Microprocessor (e.g. 8086):** Architecture, Min-max mode. 4

4  Introduction to microcontroller: Architecture & instruction set of a typical microcontroller (e.g. PIC16F84 device), Feature of popular controller (processor 8031/8051), its programming & interfacing. 8

**Text Books:**
1. Microprocessor architecture, programming & application with 8085, R. Gaonker, Penram International.
4. The 8051 microcontroller, Ayala, Thomson.

**Reference Books:**
3. The 8051 Microcontroller and Embedded systems, Muhammad Ali Mazidi & J. G. Mazidi, Pearson Education.

**MICROPROCESSOR & MICROCONTROLLER LABORATORY**

**EEE-594C**
Credit: 2 3P

1. Familiarization with 8085 register level architecture and trainer kit components including the memory map. Familiarization with process of storing and viewing the contents of memory as well as registers.
2.  
   (a) Study of prewritten program on trainer kit using the basic instruction set (data transfer, load/store, arithmetic, logical)
   (b) Assignment based on that.
3.  
   (a) Familiarization with 8085 simulator on PC
   (b) Study of prewritten program using basic instruction set (data transfer, load/store, arithmetic, logical).
   (c) Assignment based on that.
   (a) Lookup table
   (b) Copying a block of memory
   (c) Shifting a block of memory.
   (d) Packing and unpacking of BCD numbers.
   (e) Addition of BCD number
   (f) Binary to ASCII conversion
   (g) String matching
5. Program using subroutine calls and using IN/OUT instruction using 8255 PPI on the trainer kit e.g. subroutine for delay, reading switch state and glowing LEDs accordingly, finding out frequency of pulse train etc.
6. Interfacing any 8 bit latch (74LS373) with trainer kit as a peripheral mapped output port with absolute address decoding.
7. Interfacing with I/O module :
   (a) ADC
   (b) Speed control of DC motor with DAC
   (c) Keyboard
   (d) Multi digit display with multiplexing.
   (e) Stepper motor
8. Study of 8031/8051 Micro controller kit and writing program for the following task using the kit
   (a) table look up
   (b) basic arithmetic and logical operation
   (c) interfacing of keyboard and stepper motor.
## DATA STRUCTURE & ALGORITHM
### EEE-504A

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><strong>Introduction:</strong>&lt;br&gt;Importance of study of Data structure, Concept of data structure: Data and data structure, Abstract data type and data type. Algorithm and programs, Basic idea of pseudo-code, Algorithm efficiency and analysis, time and space analysis of algorithms-order notations.&lt;br&gt;Different representation: row major, column major.&lt;br&gt;Sparse matrix, its implementation and usage. Array representation of polynomials.&lt;br&gt;Singly linked list, circular linked list, doubly linked list, linked list representation of polynomial and applications.</td>
<td>08</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><strong>Stack &amp; queue:</strong>&lt;br&gt;Stack and its implementation, (using array, using linked list) application.&lt;br&gt;Queue, circular queue, dequeue, Implementation of queue- both linear and circular ( using array, using linked list) applications.&lt;br&gt;<strong>Recursion:</strong> Principle of recursion- use of stack, difference between recursion and iteration, tail recursion., Application-The Tower of Hanoi, Eight Queen Puzzle.</td>
<td>07</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><strong>Nonlinear data structure:</strong>&lt;br&gt;<strong>Trees:</strong> Basic terminologies, forest, tree representation (using array, using linked list).&lt;br&gt;Basic trees, binary tree traversal (Pre-,in-,post-order), threaded binary tree(left, right, full), non recursive traversal algorithm using threaded binary tree, expression tree. Binary search tree-operations (creation, insertion, deletion, searching), Height balanced binary tree-AVL tree (insertion, deletion with examples only). B tree operations (insertion, deletion with examples only)&lt;br&gt;<strong>Graph:</strong>&lt;br&gt;Graph definition and concept, (directed/undirected graph, weighted/un-weighted edges, sub-graph, degree, cut vertex /articulation point, pendant node, clique, complete graph, connected –strongly connected component, weakly connected component-path, shortest path, isomorphism.&lt;br&gt;Graph representation/storage implementation- adjacency matrix, adjacency list, adjacency multi-list.&lt;br&gt;Graph traversal and connectivity- Depth First Search (DFS), Breadth-First Search (BFS), concept of edges used in DFS and BFS (tree-edge, back-edge, cross-edge, and forward-edge, application.&lt;br&gt;Minimal spanning tree-Prim’s algorithm ( Basic idea of greedy methods)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><strong>Searching, Sorting:</strong>&lt;br&gt;Sorting algorithm, Bubble sort and optimization, insertion sort, shell sort, selection sort, merge sort, quick sort, heap sort (Concept of max heap, application-priority queue, radix sort.&lt;br&gt;Searching, sequential search, binary search, interpolation search.&lt;br&gt;Hashing, Hashing functions, collision resolution techniques.</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

### Text Books:
2. Data structure, S.Lipschutz.
3. Data structure and program design in C, Robert L Krusse, B.P.Leung

### Reference Books:

## DATA STRUCTURE & ALGORITHM LABORATORY
### EEE- 594A

<table>
<thead>
<tr>
<th>Credit:</th>
<th>3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Implementation of array operation</td>
</tr>
<tr>
<td>2.</td>
<td>Stack and queue: adding, deleting elements. Circular Queue: adding &amp;</td>
</tr>
</tbody>
</table>

28
deleting elements, Merging problems.
4. Evaluation of expression operation on multiple stack & queues.
5. Implementation of linked lists, inserting, deleting, inverting a linked list, implementation of stacks & queue using linked list.
6. Polynomial addition, Polynomial multiplication
7. Sparse Matrices, Multiplication, addition
8. Recursive and Nonrecursive traversal of Trees
9. Threaded binary tree traversal. AVL tree implementation.
11. Hash tables implementation, searching, inserting and deleting, searching & sorting techniques.

Experiments mentioned above are not exhaustive. More experiments may be conducted.

**DIGITAL SIGNAL PROCESSING**

**EEE-503**

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L+1T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><strong>Introduction:</strong> Discrete and continuous time signals and systems, Data acquisition and conversion including multi channel data converter and monitors. Stability, linearity and causality of linear shift invariant signal transmission and processing. Review of Z-transformation.</td>
<td>05</td>
</tr>
<tr>
<td>2</td>
<td><strong>DFS:</strong> Its properties. Fourier representation of finite duration sequences. <strong>DFT:</strong> Representation of periodic sequence computational algorithms.</td>
<td>08</td>
</tr>
<tr>
<td>3</td>
<td><strong>Fast Fourier transformation (FFT):</strong> Computational consideration. Digital Filters, Structures, different forms, Finite impulse response (FIR) and Infinite Impulse Response (IIR), Flow graph representation of digital filter. Digital filter design, IIR filter design by pulse invariant and bilinear transformation. FIR filters design using windows and frequency sampling method. Effect of finite length in DSP and effect of quantization of filter parameters in the filter design.</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td><strong>Computer control of processes:</strong> Supervisory and direct digital control. Simple filter design using MATLAB. <strong>Introduction to DSP hardware:</strong> Architectural features, Fixed point processors, Floating point processors, Control and Instrumentation application, Telemetry and metering.</td>
<td>12</td>
</tr>
</tbody>
</table>

Numerical problems to be solved in the tutorial classes.

**Text Books:**
1. Digital Signal Processing: A computer based approach, S. Mitra, TMH

**Reference Books:**
1. Digital Signal Processing, Chen, OUP
2. Digital Signal Processing, Johnson, PHI
8. Digital Signal Processing, S. Salvahanan, A. Vallavaris & C. Gnanpruga, TMH.

**DIGITAL SIGNAL PROCESSING LABORATORY**

**EEE-593**

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><strong>Simulation Laboratory using standard Simulator:</strong> Sampled sinusoidal signal, various sequences and different arithmetic operation. Convolution of two sequences using graphical methods and using commands-verification of the properties of convolution. Z transform of various sequences-verification of the properties of Z transform.</td>
<td>3P</td>
</tr>
</tbody>
</table>

29
### Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year

**Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)**

1. **Twiddle factors-verification of the properties.**
2. **DFTs/IDFTs using matrix multiplication and also using commands.**
3. **Circular convolution of two sequences using graphical methods and using commands.**
4. **Verification of the different algorithms associated with filtering of long data sequences and Overlap-add and Overlap-save methods.**
5. **Butterworth filter design with different set of parameters.**
6. **FIR filter design using rectangular, Hamming and Blackman windows.**

#### 2. Hardware laboratory using either 5416 or 6713 Processor and Xilinx FPGA:

1. Writing & execution of small programs related to arithmetic operation and convolution using assembly language of TMS320C5416/6713 processor. Study of MAC instruction.
2. Writing of small programs in VHDL and downloading onto Xilinx FPGA.
3. Mapping of some DSP algorithms onto FPGA.

### COMPUTER ORGANIZATION

**EE-504B**

**Credit: 3**

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic organization of the stored program in computer and operation sequence for execution of a program. Role of operating systems and compiler/ assembler. Fetch, decode and execute cycle. Concept of operator, operand, registers and storage. Instruction format. Instruction sets and addressing modes. Commonly used number systems. Fixed and floating point representation of numbers.</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Overflow and underflow. Design of address- ripple carry and carry look ahead principles. Design of ALU Fixed point multiplication-Booth’s algorithm Fixed point division-Restoring and non restoring algorithms. Floating point-IEEE 754 standard.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Memory unit design with special emphasis on implementation of CPU-memory interfacing. Memory organization. Static and dynamic memory, memory hierarchy, associative memory. Cache memory. Virtual memory. Data path design for read/write access.</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Design of control unit-hardwired and micro programmed control. Introduction to instruction pipelining. Introduction to RISC architecture, RISC vs. CISC architecture. I/O operations-Concepts of handshaking. Polled I/O, Interrupt and DMA.</td>
<td>10</td>
</tr>
</tbody>
</table>

**Text Books:**
1. Computer System architecture, M.M. Mano, PHI

**Reference Books:**
3. Computer Organization & design, P. Pal Chaudhuri, PHI

### COMPUTER ORGANIZATION

**EE-594B**

**Credit: 2**

<table>
<thead>
<tr>
<th>Content</th>
<th>3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Familiarity with IC chips e.g. (a) Multiplexer (b) Decoder (c) Encoder (d) Comparator</td>
<td></td>
</tr>
<tr>
<td>Truth table verification and clarification from Data-book.</td>
<td></td>
</tr>
<tr>
<td>2. Design an Adder/Subtractor composite unit.</td>
<td></td>
</tr>
<tr>
<td>3. Design a BCD adder</td>
<td></td>
</tr>
</tbody>
</table>
5. Use of a multiplexer unit to design a composite ALU.
6. Use of an ALU chip for multibit arithmetic operation.
7. Implementations of read write operation using RAM IC.
8. Cascade two RAM ICs for vertical and horizontal expansion.

### SEMESTER – VI

**PRINCIPLE OF MANAGEMENT**

**HU-601**

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 2L</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic concepts of management: Definition – Essence, Functions, Roles, Level. Functions of Management: Planning – Concept, Nature, Types, Analysis, Management by objectives; Organization Structure – Concept, Structure, Principles, Centralization, Decentralization, Span of Management; Organizational Effectiveness.</td>
<td>05</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Management and Society – Concept, External Environment, CSR, Corporate Governance, Ethical Standards. People Management – Overview, Job design, Recruitment &amp; Selection, Training &amp; Development, Stress Management. Managerial Competencies – Communication, Motivation, Team Effectiveness, Conflict Management, Creativity, Entrepreneurship</td>
<td>05</td>
<td></td>
</tr>
</tbody>
</table>

**Text Books:**

### POWER SYSTEM-II

**EEE-601**

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L+1T</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Generation of Electric Power: General layout of a typical coal fired power station, Hydro electric power station, Nuclear power station, their components and working principles, comparison of different methods of power generation. Introduction to Solar &amp; Wind energy system. Representation of Power system components: Single-phase representation of balanced three phase networks, the one-line diagram and the impedance or reactance diagram, per unit (PU) system.</td>
<td>06</td>
<td></td>
</tr>
</tbody>
</table>
### Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year

Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

<table>
<thead>
<tr>
<th>Module</th>
<th>Credit</th>
<th>Contact</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>3</strong></td>
<td>power system, synchronous machine, transmission lines and transformers. Symmetrical component analysis of unsymmetrical faults, single line-to-ground fault, line-to-fault, double line-to-ground fault.</td>
<td></td>
<td><strong>08</strong></td>
</tr>
<tr>
<td><strong>4</strong></td>
<td><strong>Power system stability:</strong> Steady state stability, transient stability, equal area criteria, swing equation, multi machine stability concept.</td>
<td></td>
<td><strong>04</strong></td>
</tr>
<tr>
<td><strong>5</strong></td>
<td><strong>Power system protection:</strong> Protective zones, Relaying elements and quantities. Protective relays, basic requirements and type of protection, phase and amplitude comparator, grading (time &amp; current), classification of Electromagnetic relays, Directional relay, Distant relay, Differential relay, basic aspects of static and digital relays, relay protection scheme for transformer, feeder, generators and motors. Circuit breakers, circuit breaking transients, transient recovery voltage, current chopping and resistance switching, circuit breaker rating, arc and arc extinction, circuit breaker types, oil circuit breaker, vacuum circuit breaker, air blast circuit breaker, SF6 circuit breaker and operating mechanism, advantages and disadvantages of different types.</td>
<td></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

**Problems based on the topics to be solved in the tutorial classes**

**Text Books:**
2. Electrical Power Systems, Subir Ray, PHI

**Reference Books:**

**CONTROL SYSTEM**

**EEE-602**

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1</strong></td>
<td><strong>Introduction to control system:</strong> Concept of feedback and Automatic control, Effects of feedback, Objectives of control system, Definition of linear and nonlinear systems, Elementary concepts of sensitivity and robustness. Types of control systems, Servomechanisms and regulators, examples of feedback control systems. Transfer function concept. Pole and Zeros of a transfer function. Properties of Transfer function. <strong>Mathematical modeling of dynamic systems:</strong> Translational systems, Rotational systems, Mechanical coupling. Liquid level systems, Electrical analogy of Spring–Mass–Dashpot system. Block diagram representation of control systems. Block diagram algebra. Signal flow graph. Mason’s gain formula. <strong>Control system components:</strong> Potentiometer, Synchros, Resolvers, Position encoders.</td>
<td><strong>08</strong></td>
</tr>
<tr>
<td><strong>2</strong></td>
<td><strong>Time domain analysis:</strong> Time domain analysis of a standard second order closed loop system. Concept of undamped natural frequency, damping, overshoot, rise time and settling time. Dependence of time domain performance parameters on natural frequency and damping ratio. Step and Impulse response of first and second order systems. Effects of Pole and Zeros on transient response. Stability by pole location. Routh-Hurwitz criteria and applications. <strong>Error Analysis:</strong> Steady state errors in control systems due to step, ramp and parabolic</td>
<td><strong>08</strong></td>
</tr>
</tbody>
</table>
inputs. Concepts of system types and error constants.

<table>
<thead>
<tr>
<th>3</th>
<th>State variable Analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>State variable model of Linear Time-invariant system, properties of the State transition matrix, State transition equation. Definition of transfer function &amp; Characteristic equation, definition of controllability and observability.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Stability Analysis using root locus:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Importance of Root locus techniques, construction of Root Loci for simple systems. Effects of gain on the movement of Pole and Zeros.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Control System performance measure:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Improvement of system performance through compensation. Lead, Lag and Lead- lag compensation, PI, PD and PID control.</td>
</tr>
</tbody>
</table>

Numerical problems to be solved in the tutorial classes.

Text books:
3. Control System Engineering, D. Roy Choudhury, PHI

Reference Books:
1. Control Engineering Theory & Practice, Bandyopadhaya, PHI
2. Control systems, K.R. Varmah, Mc Graw hill
6. Modeling & Control of dynamic system, Macia & Thaler, Thompson
8. Modern Control Engineering, Y. Singh & S. Janardhanan, Cengage Learning
10. Automatic Control system, A. William, Wolovich, Oxford

POWER ELECTRONICS
EEE-603

<table>
<thead>
<tr>
<th>Credit: 4</th>
<th>Contact: 3L+1T</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Concept of power electronics, application of power electronics, uncontrolled converters, advantages and disadvantages of power electronics converters, power electronics systems, power diodes, power transistors, power MOSFETS, IGBT and GTO.</td>
<td>04</td>
</tr>
<tr>
<td>2</td>
<td>PNPN devices: Thyristors, brief description of members of Thyristor family with symbol, V-I characteristics and applications. Two transistor model of SCR, SCR turn on methods, switching characteristics, gate characteristics, ratings, SCR protection, series and parallel operation, gate triggering circuits, different commutation techniques of SCR.</td>
<td>05</td>
</tr>
</tbody>
</table>
### Phase controlled converters:
Principle of operation of single phase and three phase half wave, half controlled, full controlled converters with R, R-L and RLE loads, effects of free wheeling diodes and source inductance on the performance of converters. External performance parameters of converters, techniques of power factor improvement, single phase and three phase dual converters.

### DC-DC converters:
Principle of operation, control strategies, step up choppers, types of choppers circuits based on quadrant of operation, performance parameters, multiphase choppers and switching mode regulators.

### Inverters:

### AC controllers:
Principle of on-off and phase control, single phase and three phase controllers with R and R-L loads. Principle of operation of cycloconverters, circulating and non circulating mode of operation, single phase to single phase step up and step down cycloconverters, three phase to single phase Cycloconverters, three phase to three phase Cycloconverter.

### Applications:
Speed control of AC and DC motors. HVDC transmission. Static circuit breaker, UPS, static VAR controller.

### Text Books:
2. Power Electronics, V.R. Moorthi, Oxford, 2005
3. Power Electronics, M.H. Rashid, PHI, 3rd Edition

### Reference Books:
2. Power Electronics, Mohan,Undeland & Riobbins, Wiley India
5. Power Electronics, M.S. Jamal Asgha, PHI, 2007
6. Analysis of Thyristor power conditioned motor, S.K. Pillai, University Press.
7. Power Electronics : Principles and applications, J.M. Jacob, Thomson

### OPERATING SYSTEM
**EEE-604 (a)**

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><strong>Introduction:</strong> Introduction to OS, Operating system functions, evaluation of OS, different types of OS, batch, multi-programmed, time – sharing, real-time, distributed, parallel.</td>
<td></td>
<td>03</td>
</tr>
<tr>
<td>2</td>
<td><strong>System Structure:</strong> Computer system operation, I/O structure, storage structure, storage hierarchy, different types of protections, operating system structure (Simple, layered, virtual machine), OS services, system calls.</td>
<td></td>
<td>03</td>
</tr>
</tbody>
</table>
3 Process Management:
- Process: Concept of process, process scheduling, operation on processes, co-operating processes, inter-process communication.
- Thread: Overview, benefits of threads, user and kernel threads.
- CPU scheduling: scheduling criteria, preemptive & non-preemptive scheduling, scheduling algorithm (FCFS, SJF, RR, and priority), algorithm evaluation, multi processor scheduling.
- Process Synchronization: background, critical section problem, critical region, synchronization hardware, classical problems of synchronization, semaphores.
- Deadlocks: system model, deadlock characterization, methods for handling deadlocks, deadlock prevention, deadlock avoidance, deadlock detection, recovery from deadlock.

4 Storage Management:
- Memory management: background, logical Vs physical addresses space, swapping, contiguous memory allocation, paging segmentation, segmentation with paging.
- File systems: file concept, access methods, directory structure, file system structure, allocation methods (contiguous, linked, indexed), free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency & performance.
- I/O Management: I/O hardware, polling, interrupts, DMA, application I/O interface (block and character devices, network devices, clock and timers, blocking and non blocking I/O), kernel I/O subsystem (scheduling, buffering, caching, spooling and device reservation, error handling), performance.
- Disk Management: disk structure, disk scheduling (FCFS, SSTF, SCAN, C-SCAN), disk reliability, disk formatting, boot block, bad blocks.

5 Protection & Security: Goals of protection, domain of protection, security problem, authentication, one time password, program threats, system threats, threats monitoring, encryption

Text Books:
1. Operating system: Concept & design, M. Milenkovie, Mc Graw Hill.
2. Operating System Design & Implementation, A.S. Tanenbaum, PHI
3. Operating system, Dhamdhere, TMH

Reference Books:
2. An introduction to Operating system, H.N. Dietel, Addison Wesley.

OBJECT ORIENTED PROGRAMMING & JAVA

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Object oriented Design: Concept of Object oriented programming language, Major and minor elements, Object, Class, relationship among objects, aggregation, links, relationship among classes-association, aggregation using instantiation, meta-class, grouping constructs.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Object oriented concept: Difference between OOP and other conventional programming, advantages and disadvantages. Class, object, message passing, inheritance, encapsulation, polymorphism.</td>
<td>04</td>
<td></td>
</tr>
</tbody>
</table>
Basic concepts of Object oriented programming using Java:
Class & Object properties: Basic concepts of Java programming-advantages of Java, byte-code & JVM, data types, access specifiers, operators, control statements & loops, array, creation of class, object, constructor, finalize and garbage collection, use of method overloading, this keyword, use of objects as parameter & methods returning objects, call by value & call by reference, static variables & methods, garbage collection, nested and inner classes, basic string handling concepts, String (discuss char(), compare(), equals(), equalsIgnoreCase(), indexof(), length(), substring(), toCharArray(),toLowerCase(), toString(), methods), concept of mutable and immutable string, command line arguments, basics of I/O operations-keyboard input using BufferedReader & Scanner classes.

Reusability properties: Super class & subclasses including multilevel hierarchy, process of constructor calling in inheritance, use of super and final keywords with super() method, dynamic method dispatch, use of abstract classes, & methods, interfaces. Creation of packages, importing packages, member access for packages.

Exception handling & Multithreading: Exception handling basics, different types of exception classes, use of try & catch with throw, throws & finally, creation of user defined exception classes. Basics of multithreading, main thread, thread life cycle, creation of multiple threads, thread synchronization, inter thread communication, deadlocks for threads, suspending & resuming threads.

Applet Programming (using swing): Basics of applet programming, applet life cycle, difference between application & applet programming, parameter passing in applet in applets, concept of delegation event model and listener, I/O in applets, use of repaint(), getDocumentBase(), getCodeBase() methods, layout manager (basic concept), creation of buttons (JButton class only) & text fields.

Text Books:
1. Object Oriented Modeling and design, James Rambaugh & Michael Blaha, PHI.
2. Object Oriented Programming with C++ and Java, D. Samanta, PHI
3. Programming with Java: A Primer, E. Balagurusamy, TMH.

Reference Books:
2. The complete reference Java2, Patrick Naughton & Herbert Schildt, TMH.

EMBEDDED SYSTEMS
EEE-604(c)

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td><strong>PIC Microcontroller:</strong> PIC Microcontrollers: 16F877 Architecture and Instruction Set. External Interrupts, Timers, watch-dog timer, I/O port Expansion, analog-to-digital converter, UART, I2C and SPI Bus for Peripheral Chips, Accessories and special features</td>
<td>08</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><strong>Software architecture and RTOS:</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Software Architecture: Round Robin - Round Robin with interrupts - Function Queue - Scheduling
Architecture RTOS: Architecture - Tasks and Task States - Tasks and Data - Semaphores and Shared Data - Message Queues - Mail Boxes and pipes - Timer Functions - Events - Memory Management Interrupt Routines

4 Basic design using a real time operating system:
Overview, General principles. Design of an embedded system.

5 Software development tools and debugging techniques:
Testing using laboratory tools.

Text Books:

Reference Books:

POWER PLANT ENGINEERING
EEE-605 (a)

Credit: 3 Contact: 3L

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Power and energy, sources of energy, review of thermodynamic cycles related to power plants, fuels and combustion calculations. Load estimation, load curves, various terms and factors involved in power plant calculations. Effect of variable load on power plant operation, Selection of power plant.</td>
<td>08</td>
</tr>
<tr>
<td>2</td>
<td>Power plant economics and selection: Effect of plant type on costs, rates, fixed elements, energy elements, customer elements and investor’s profit; depreciation and replacement, theory of rates. Economics of plant selection, other considerations in plant selection.</td>
<td>08</td>
</tr>
<tr>
<td>3</td>
<td>Steam power plant: General layout of steam power plant, Power plant boilers including critical and super critical boilers. Fluidized bed boilers, boilers mountings and accessories, Different systems such as coal handling system, pulverizers and coal burners, combustion system, draft, ash handling system, Dust collection system, Feed water treatment and condenser and cooling towers and cooling ponds, Turbine auxiliary systems such as governor, feed heating, reheating, flange heating and gland leakage. Operation and maintenance of steam power plant, heat balance and efficiency, Site selection of a steam power plant.</td>
<td>08</td>
</tr>
<tr>
<td>4</td>
<td>Diesel power plant: General layout, Components of Diesel power plant, Performance of diesel power plant, fuel system, lubrication system, air intake and admission system, supercharging system, exhaust system, diesel plant operation and efficiency, heat balance, Site selection of diesel power plant, Comparative study of diesel power plant with steam</td>
<td>08</td>
</tr>
</tbody>
</table>
Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year
Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

Power Plant:

**Gas turbine power plant:**
Layout of gas turbine power plant, Elements of gas turbine power plants, Gas turbine fuels, cogeneration, auxiliary systems such as fuel, controls and lubrication, operation and maintenance, Combined cycle power plants, Site selection of gas turbine power plant.

**Nuclear power plant:**
Principles of nuclear energy Lay out of nuclear power plant, Basic components of nuclear reactions, nuclear power station, Nuclear waste disposal, Site selection of nuclear power plants.

**Hydro electric station:**
Hydrology, Principles of working, applications, site selection, classification and arrangements, run off the river plant and choice of units, operation and maintenance, hydro systems, interconnected systems.

**Non Conventional Power Plants**
Introduction to non-conventional power plants (Solar, wind, geothermal, tidal)etc.

**Power Plant Auxiliaries:**
Cooling system: Generators, transformers.
Instrumentation: Purpose, classification, selection and application, recorders, Data logger and their use. Pollution control measure in power plants.

**Text Books:**

**Reference Books:**
3. Power plant Engineering, K.K. Ramalingam, Scitech

**COMMUNICATION ENGINEERING**
EEE-605(b)

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

38
**Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year**

Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

| 1 | **Elements of communication system:**  
|   | The elements of a communication system, origin of noise and its effect, importance of SNR in system design.  
|   | Basic principle of linear (AM) modulation, Generation of AM waves, Demodulation of AM wave.  
|   | Sampling theorem, sampling rate, impulse sampling, reconstruction from samples, Aliasing.  
|   | Analog pulse modulation-PAM (natural & flat topped sampling), PWM, PPM.  
|   | Basic concept of Pulse code modulation, Block diagram of PCM, Multiplexing-TDM, FDM. |

| 2 | **Digital transmission:**  
|   | Concept of Quantization & Quantization error, Uniform quantizer, Non-uniform quantizer, A-law and \( \mu \)-law. Encoding, coding efficiency. Line coding & properties, NRZ & RZ, AMI, Manchester coding, PCM, DPCM. Base band pulse transmission, Matched filter, error rate due to noise, ISI, Raised cosine function, Nyquist criterion for distortion-less base band binary transmission, Eye pattern, Signal power in binary digital signal. |

| 3 | **Digital carrier modulation & demodulation technique:**  
|   | Bit rate, Baud rate, Information capacity, Shanon’s limit, M-ary encoding, Introduction to the different digital modulation techniques-ASK,FSK, PSK, BPSK, QPSK, mention of 8 BPSK, 16 BPSK.  
|   | Introduction to QAM, basic of 8 QAM, 16 QAM.  
|   | Basic concept of Delta modulating, Adaptive delta modulation.  
|   | Introduction to the concept DPCM.  
|   | Basic concept of spread spectrum modulation. |

| 4 | **Introduction to coding theory:**  
|   | Introduction, News value & Information content, Entropy, Mutual information, Information rate, Shanon-Fano algorithm for encoding, Shanon’s theorem- source coding theorem, Channel coding theorem, Information capacity theorem.  
|   | Basic principle of Error control & coding. |

**Numerical problems to be solved in the class.**

**Text Books:**

1. An Introduction to Analog and Digital communication, Simon Haykin, Wiely India.  
2. Analog communication system, P. Chakrabarti, Dhanpat Rai & Co.  

**Reference Books:**


**POWER SYSTEM LABORATORY**

**EEE-691**

Credit: 2       Contact: 3P
List of Experiments:
1. Study of the characteristics of on load time delay relay and off load time delay relay.
2. Test to find out polarity, ratio and magnetization characteristics of CT and PT.
3. Test to find out characteristics of under voltage relay and earth fault relay.
4. Study on DC load flow
5. Study on AC load flow using Gauss-seidel method
7. Study on Economic load dispatch.
8. Study of different transformer protection schemes by simulation.
9. Study of different generator protection schemes by simulation.
10. Study of different motor protection schemes by simulation.
11. Study of different characteristics of over current relay.
12. Study of different protection scheme for feeder.

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

CONTROL SYSTEM LABORATORY
EEE-692
Credit: 2                                             3P

1. Familiarization with MATLAB control system tool box, MATLAB- SIMULINK tool box & PSPICE

2. Determination of Step response for first order & Second order system with unity feedback on CRO & calculation of control system specification like Time constant, % peak overshoot, settling time etc. from the response.

3. Simulation of Step response & Impulse response for type-0, type-1 & Type-2 system with unity feedback using MATLAB & PSPICE.

4. Obtain Transfer Function of a given system from State Variable model and vice versa. State variable analysis of a physical system - obtain step response for the system by simulation.

5. State variable analysis using simulation tools. To obtain step response and initial condition response for a single input, two-output system in SV form by simulation.

6. Determination of Root locus, Bode plot, Nyquist plot using MATLAB control system tool box for 2nd order system & determination of different control system specification from the plot.

7. Determination of PI, PD and PID controller action of first order simulated process.
8. Determination of approximate transfer functions experimentally from Bode plot.
9. Evaluation of steady state error, setting time, percentage peak overshoot, gain margin, phase margin with addition of Lead

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Reference Books:
1. Matlab & Simulink for Engineers, Agam Kumar Tyagt, Oxford
2. Modeling & Simulation using Matlab-Simulink, Dr. S. Jain, Wiley India

POWER ELECTRONICS LABORATORY
EEE-693
Credit: 2       Contact: 3P

List of Experiments:
1. Study of the characteristics of an SCR.
2. Study of the characteristics of a Triac.
3. Study of different triggering circuits of an SCR.
4. Study of firing circuits suitable for triggering SCR in a single phase full controlled bridge.
5. Study of the operation of a single phase full controlled bridge converter with R and R-L load.
10. Study of performance of single phase half controlled symmetrical and asymmetrical bridge converter (simulation).

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Reference books:
2. SPICE for Power electronics and electric power, M.H. Rashid & H.M. Rashid, Taylor & Francis.
5. Modeling & Simulation using MATLAB-SIMULINK, S. Jain, Wiley India.

OPERATING SYSTEM LABORATORY
EEE-694 (a)
Credit: 2       Contact: 3P

1. Shell programming: creating a script, making a script executable, shell syntax (variables, conditions, control structures, function, commands).
2. Process: starting new process, replacing a process image, duplicating a process image, waiting for a process, zombie process.
5. POSIX Threads: programming with pthread function (viz. pthread_create, pthread_join, pthread_exit, pthread_attr_init, pthread_cancel).
7. **Inter-process communication**: pipes (use functions pipe, popen, pclose), named pipes (FIFOs, accessing FIFO.

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

**OBJECT ORIENTED PROGRAMMING & JAVA LABORATORY**

EEE-694 (b)

Credit: 3       Contact: 3P

1. Assignments on class, constructor, overloading, inheritance, overriding.
2. Assignments on wrapper, class, arrays.
3. Assignments on developing interfaces-multiple inheritance, extending interfaces.
4. Assignments on creating and accessing packages.
5. Assignments on multithreaded programming.
6. Assignment on applet programming

**OBJECT ORIENTED PROGRAMMING & JAVA LABORATORY**

EEE-694 (b)

Credit: 3       Contact: 3P

1. Assignments on class, constructor, overloading, inheritance, overriding.
2. Assignments on wrapper, class, arrays.
3. Assignments on developing interfaces-multiple inheritance, extending interfaces.
4. Assignments on creating and accessing packages.
5. Assignments on multithreaded programming.
6. Assignment on applet programming

Note: Use Java for programming

Preferably download "java_ee_sdk-6u4-jdk7-windows.exe" from

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

**EMBEDDED SYSTEMS LABORATORY**

EE-694 (d)

Credit: 2       Contact: 3P

1. Familiarization with a microcontroller kit (and its associated PC based development system). Entering and executing a program, interfacing a LED matrix and display a specific pattern (digit) on the matrix.
2. Key board-MCU interfacing: Interfacing a 4X4 switch matrix with Microcontroller. – detect keyboard operation through interrupt, take an input from the keyboard and display the data on an LED Matrix.
3. Generation of triangular wave analog signal by PWM, triggering through internal timer.
4. MCU-DAC interfacing and generation of triangular wave, triggering through timer (on chip timer).
5. MCU interfacing and displaying a string in an LCD Display.
6. Interfacing of an ADC and data transfer by software polling.
7. ADC triggering through timer (on chip timer), Interrupt driven data transfer from ADC
8. Stepper motor position control using a Microcontroller. Generating a periodic staircase triangular wave position pattern with a fixed time period. Recording the rotor position in a video.
9. Serial communication between Microcontroller and PC
10. Temperature control (PD and PID) using a microcontroller and PWM output.

Reference Books:

Institute may develop experiments based on the theory taught in addition to experiments mentioned.
VLI & MICROELECTRONICS

EEE-701

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L+1T</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to VLSI Design: VLSI Design Concepts, Moore’s Law, Scale of Integration (SSI, MSI, LSI, VLSI, ULSI – basic idea only), Types of VLSI Chips (Analog &amp; Digital VLSI chips, General purpose, ASIC, PLA, FPGA), Design principles (Digital VLSI – Concept of Regularity, Granularity etc), Design Domains (Behavioral, Structural, Physical), Y-Chart, Digital VLSI Design Steps.</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Hardware Description Language – VHDL or Verilog Combinational &amp; Sequential Logic circuit Design.</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Problems to be solved in the tutorial classes.

Text Books:
2. CMOS Digital Integrated Circuit, S.M.Kang & Y.Leblebici, TMH.
4. VHDL, Bhaskar, PHI.
5. Advance Digital Design Using Verilog , Michel D. Celliti, PHI

References:
2. Modern VLSI Design: system on silicon, Wayne Wolf; Addison Wesley Longman Publisher

DIGITAL COMMUNICATION

EEE-702

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L+1T</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Probability Theory and Random Processes: Conditional probability, communication example, joint probability, statistical independence, random variable-continuous and discrete, cumulative distribution function, probability density function – Gaussian, Rayleigh and Rician, mean, variance, random process, stationary and ergodic processes, correlation coefficient, covariance, auto correlation function and its properties, random binary wave, power spectral density.</td>
<td></td>
<td>06</td>
</tr>
</tbody>
</table>
Signal Vector Representation:
Analogy between signal and vector, distinguishability of signal, orthogonality and orthonormality, basis function, orthogonal signal space, message point, signal constellation, geometric interpretation of signals, likelihood functions, Schwartz inequality, Gram-Schmidt orthogonalization procedure, response of the noisy signal at the receiver, maximum likelihood decision rule, decision boundary, optimum correlation receiver; probability of error, error function, complementary error function, Type-I and Type-II errors.

Digital Data Transmission:
Concept of sampling, Pulse Amplitude Modulation (PAM), interlacing and multiplexing of samples, Pulse Code Modulation (PCM), quantization, uniform and non-uniform quantization, quantization noise, binary encoding, A-Law and b-law companding, differential PCM, delta modulation and adaptive delta modulation. Digital transmission components, source multiplexer, line coder, regenerative repeater, concept of line coding –polar/unipolar/bipolar NRZ and RZ, Manchester, differential encoding and their PSDs, pulse shaping, Inter Symbol Interference. (ISI), Eye pattern, Nyquist criterion for zero ISI, equalizer, zero forcing equalizer, timing extraction.

Digital Modulation Techniques:
Types of Digital Modulation, coherent and non-coherent Binary Modulation Techniques, basic digital carrier modulation techniques: ASK, FSK and PSK, Coherent Binary Phase Shift Keying (BPSK), geometrical representation of BPSK signal; error probability of BPSK, generation and detection of BPSK Signal, power spectrum of BPSK. Concept of M-ary Communication, M-ary phase shift keying, the average probability of symbol error for coherent M-ary PSK, power spectra of MPSK, Quadrature Phase Shift Keying (QPSK), error probability of QPSK signal, generation and detection of QPSK signals, power spectra of QPSK signals, Offset Quadrature Phase Shift Queuing (OQPSK), Coherent Frequency Shift Keying (FSK), Binary FSK, error probability of BFSK signals, generation and detection of Coherent Binary FSK signals, power spectra of BFSK signal, Minimum Shift Keying (MSK), signal constellation of MSK waveforms, error probability of MSK signal, Gaussian Minimum Shift Keying: GMSK, basic concept of OFDM, constellation diagram, Some performance issues for different digital modulation techniques - Error Vector Magnitude (EVM), Eye Pattern and Relative Constellation Error (RCE), Conceptual idea for Vector Signal Analyzer (VSA).

Numerical problems to be solved in the tutorial class.

Text Books:
1. Digital Communications, S. Haykin, Wiley India.
3. Wireless Communication and Networks: 3G and Beyond, I. Saha Misra, TMH Education.

REFERENCE BOOKS:

ELECTRIC DRIVES
EEE-703 (a)
Credit: 3    Contact: 3L

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
</table>

44
### Electric Drive:

### Motor power rating:
Thermal model of motor for heating and cooling, classes of motor duty, determination of motor rating for continuous, short time and intermittent duty, equivalent current, torque and power methods of determination of rating for fluctuating and intermittent loads. Effect of load inertia & environmental factors.

### Stating of Electric Drives:
Effect of starting on power supply, motor and load. Methods of stating of electric motors. Acceleration time, energy relation during stating, methods to reduce the energy loss during starting.

### Braking of Electric Drives:
Types of braking, braking of DC motor, Induction motor and Synchronous motor, energy loss during braking.

### DC motor drives:
Modeling of DC motors, state space modeling, block diagram & transfer function, single phase, three phases fully controlled and half controlled DC drives. Dual converter control of DC drives. Power factor, supply harmonics and ripple in motor current chopper controlled DC motor drives.

### Induction motor drives:
Stator voltage variation by three phase controllers, speed control using chopper resistance in the rotor circuit, slip power recovery scheme. Pulse width modulated inverter fed and current source inverter fed induction motor drive. Volts/Hertz Control, Vector or field oriented control.

### Synchronous motor drives:
Variable frequency control, self control, voltage source inverter fed synchronous motor drive, vector control.

### Introduction to Solar and Battery Powered Drive, Stepper motor, Switched Reluctance motor drive

### Industrial application:
Drive consideration for textile mills, steel rolling mills, cement mills, paper mills, machine tools, cranes & hoist drives.

### Numerical problems to be solved in the class.

### Text Books:
2. Electric Drives, Vedam Subrahmanyam, TMH

### Reference Books:
1. Electric motor drives, R. Krishnan, PHI
3. Electric Motor & Drives, Austin Hughes, Newnes.

---

**UTILISATION OF ELECTRIC POWER**
EEE-703(b)

Credit: 3
Contact: 3L
Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year
Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

Module | Content | Hour
--- | --- | ---
1 | **Electric Traction:**
Requirement of an ideal traction system, Supply system for electric traction, Train movement (speed time curve, simplified speed time curve, average speed and schedule speed), Mechanism of train movement (energy consumption, tractive effort during acceleration, tractive effort on a gradient, tractive effort for resistance, power & energy output for the driving axles, factors affecting specific energy consumption, coefficient of adhesion).
Electric traction motor & their control:
Parallel and series operation of Series and Shunt motor with equal and unequal wheel diameter, effect of sudden change of in supply voltage, Temporary interruption of supply, Tractive effort and horse power.
Use of AC series motor and Induction motor for traction.
Traction motor control:
DC series motor control, Multiple unit control, Braking of electric motors, Electrolysis by current through earth, current collection in traction system, Power electronic controllers in traction system. | 16

2 | **Illumination:**
The nature of radiation, Polar curve, Law of illumination, Photometry (Photovoltaic cell, distribution photometry, integrating sphere, brightness measurement), Types of Lamps: Conventional and energy efficient, Basic principle of light control, Different lighting scheme & their design methods, Flood and Street lighting. | 08

3 | **Electric Heating welding:**
Types of heating, Resistance heating, Induction heating, Arc furnace, Dielectric heating, Microwave heating. | 08

4 | **Electrolytic processes:**
Basic principles, Faraday’s law of Electrolysis, Electro deposition, Extraction and refining of metals, Power supply of Electrolytic processes. | 08

Numerical problems to be solved in the class.

Text Books:

Power Plant Instrumentation & Control
EEE-703(c)

To be uploaded

DIGITAL IMAGE PROCESSING
EEE-704(a)

Module | Content | Contact | Hour
--- | --- | --- | ---
1 | **Digital Image Processing Systems:**
Introduction to structure of human eye, Image formation in the human eye, Brightness adaptation and discrimination, Image sensing and acquisition, storage, Processing, Communication, Display Image Sampling and quantization, Basic relationships between pixels. | 3L | 05
### Image Transforms (implementation):


### Image Enhancement in the Spatial and Frequency Domain:


### Image Data Compression:


### Morphological Image Processing:

Introduction, Dilation, Erosion, Opening, closing, Hit -or-miss transformation, Morphological algorithm operations on binary Images, Morphological algorithm operations on gray-scale Images.

### Image Segmentation, Representation and Description:

Detection of discontinuities, Edge linking and Boundary detection, Thresholding region based segmentation, Image Representation schemes, Boundary descriptors, and Regional descriptors.

**Numerical problems to be solved in the class.**

**Text Books:**

**Reference Books:**

---

### BIO-MEDICAL INSTRUMENTATION

**EEE-704(b)**

**Credit: 3**

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L</th>
<th>Hour</th>
</tr>
</thead>
</table>
| 1      | Fundamentals:
Introduction to Physiological Systems –Organism, Cardiovascular, Respiratory, Renal, Hepatic, Gastrointestinal, Endocrinial, Nervous, Muscular, Cellular.
Fundamentals of Electrophysiology –EKG, EEG, EMG, Evoked potentials. Quantification of Biological Signals. | | 08 |

| 2      | Measurement & Analysis:
Biological Sensors- Bio-electrodes, Biosensors and Transducers for Cardiology, Neurology, Pulmonary, Oxygen saturation & gaseous exchange, flow measurement, goniometry, Endoscopy, Impedance Plethysmography. Biomedical Amplifiers –Instrumentation Amplifiers for Electrophysiology (ECG, EMG, EEG, EOG), Filters, Power Supplies. | | 10 |
Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year
Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

<table>
<thead>
<tr>
<th>Recording and Display systems, Digital Conversion for storage, Electrical Hazards in measurements, Isolation Circuits, calibration, alarms &amp; Multi-channel re-constitution, Hospital requirements – Multi-parameter bed-side monitors, Central Nursing Stations, Defibrillators, Ventilators, Catheters, Incubators.</th>
</tr>
</thead>
</table>
| **Life-Support & Treatment:**
Cardiac Support: Implantable & programmable Pacemakers, External & Internal Defibrillators, Coronary Angiography.
Electro-physiotherapy: Shortwave & ultrasonic diathermy, Transcutaneous Nerve Stimulators in pain relief, Traction Systems,
Ultrasound in bone fracture regeneration, hypothermia & hyperthermia systems.
Lasers in treatment and surgery : Ophthalmic, Ablators, Endoscopic. Assists and Artificial limbs- Orthoses , passive and powered Prostheses |
| **Imaging:**
Fundamentals of X-Rays, Radiological Imaging, Digital Radiology, DSA.
Computer Tomography, Image Processing, solid state sensors, whole-body scans.
Gamma camera & radio-isotope imaging.
Ultrasonography- Transducers, Signal Conditioners, 2D & 3D scans, Doppler & Colour Doppler. 
Fundamentals of Magnetic Resonance Imaging and PET – scans. |

**Text Books:**
1. Handbook of Biomedical Instrumentation , R S Khandpur, Tata –Mcgraw Hill Education [Partly Downloadable]
6. Design of Micro- controller based Medical Instrumentation, J Tompkins & J G Webster, Prentice Hall Inc

**Reference Books:**
1. A systems approach to Biomedicine, W.B. Blesser , McGraw Hill.,
2. Biomedical Engineering, J H U Brown, J E Jacobs & L Stark, Davis Co, Philadelphia, USA.

**NON CONVENTIONAL ENERGY**

**EEE-704 (c)**
**Credit: 3**  **Contact: 3L**

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact</th>
</tr>
</thead>
</table>
| **Introduction to Energy sources:**
Renewable and non-renewable energy sources, energy consumption as a measure of Nation’s development; strategy for meeting the future energy requirements Global and National scenarios, Prospects of renewable energy sources. Impact of renewable energy generation on environment, Kyoto Protocol. |
| 1 | | 03 |
| **Solar Energy:**
Solar radiation - beam and diffuse radiation, solar constant, earth sun angles, attenuation and measurement of solar radiation, local solar time, derived solar angles, sunrise, sunset and day length. flat plate collectors, concentrating collectors, Solar air heaters-types, solar driers, storage of solar energy-thermal storage, solar pond , solar water heaters, solar distillation, solar still, solar cooker, solar heating & cooling of buildings, photo voltaics - solar cells, different types of PV Cells, Mono-poly Crystalline and amorphous Silicon solar cells. Design of PV array. Efficiency and cost of PV systems & its applications. PV hybrid systems. |
| 2 | | 03 |
## Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year

Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Introduction:</strong></td>
<td>Introduction to OS, Operating system functions, evaluation of OS, different types of OS: batch, multi-programmed, time – sharing, real-time, distributed, parallel.</td>
<td><strong>Hour</strong></td>
</tr>
<tr>
<td><strong>System Structure:</strong></td>
<td>Computer system operation, I/O structure, storage structure, storage hierarchy, different types of protections, operating system structure (Simple, layered, virtual machine), OS services, system calls.</td>
<td><strong>03</strong></td>
</tr>
</tbody>
</table>

### Wind Energy:
- Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.

### Energy from Biomass:
- Biomass conversion technologies, Biogas generation plants, classification, advantages and disadvantages, constructional details, site selection, digester design consideration, filling a digester for starting, maintaining biogas production, Fuel properties of bio gas, utilization of biogas.

### Geothermal Energy:
- Estimation and nature of geothermal energy, geothermal sources and resources like hydrothermal, geo-pressured hot dry rock, magma, advantages, disadvantages and application of geothermal energy, prospects of geothermal energy in India.

### Energy from Ocean:
- Ocean Thermal Electric Conversion (OTEC) systems like open cycle, closed cycle, Hybrid cycle, prospects of OTEC in India. Energy from tides, basic principle of tidal power, single basin and double basin tidal power plants, advantages, limitation and scope of tidal energy. Wave energy and power from wave, wave energy conversion devices, advantages and disadvantages of wave energy.

### Magneto Hydrodynamic power generation:
- Principle of MHD power generation, MHD system, Design problems and developments, gas conductivity, materials for MHD generators and future prospects.

### Hydrogen Energy:

### Fuel cell:
- Introduction, Design principle and operation of fuel cell, Types of fuel cells, conversion efficiency of fuel cell, application of fuel cells.

Numerical problems to be solved in the class.

**Text Books:**
2. Renewable energy sources and conversion technology, Bansal Keemann, Meliss, Tata Mc Graw Hill.

**Reference Books:**
1. Renewable energy resources and emerging technologies, D.P. Kothari, Prentice Hall of India Pvt. Ltd.

**OPERATING SYSTEM**

EEE-705 (a)
<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
</table>
| 3     | Process Management:  
Process: Concept of process, process scheduling, operation on processes, co-operating processes, inter-process communication.  
Thread: Overview, benefits of threads, user and kernel threads.  
CPU scheduling: scheduling criteria, preemptive & non-preemptive scheduling, scheduling algorithm (FCFS, SJF, RR, and priority), algorithm evaluation, multi processor scheduling.  
Process Synchronization: background, critical section problem, critical region, synchronization hardware, classical problems of synchronization, semaphores.  
Deadlocks: system model, deadlock characterization, methods for handling deadlocks, deadlock prevention, deadlock avoidance, deadlock detection, recovery from deadlock. | 13 |
| 4     | Storage Management:  
Memory management: background, logical Vs physical addresses space, swapping, contiguous memory allocation, paging segmentation, segmentation with paging.  
File systems: file concept, access methods, directory structure, file system structure, allocation methods (contiguous, linked, indexed), free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency & performance.  
I/O Management: I/O hardware, polling, interrupts, DMA, application I/O interface (block and character devices, network devices, clock and timers, blocking and non blocking I/O), kernel I/O subsystem (scheduling, buffering, caching, spooling and device reservation, error handling), performance.  
Disk Management: disk structure, disk scheduling (FCFS, SSTF, SCAN, C-SCAN), disk reliability, disk formatting, boot block, bad blocks. | 17 |
| 5     | Protection & Security: Goals of protection, domain of protection, security problem, authentication, one time password, program threats, system threats, threats monitoring, encryption | 04 |

**Text Books:**
3. Operating system: Concept & design, M. Milenkovic, Mc Graw Hill.
4. Operating System Design & Implementation, A.S. Tanenbaum, PHI
5. Operating system, Dhamdhere, TMH

**Reference Books:**

**Module**  
**Content**  
**Hour**

**Credit:** 3  
**Contact:** 3L  
**EMBEDDED SYSTEM**  
**EEE-705(b)**
### Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year

Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

---

### Module 1: Introduction to Embedded systems:
- Microcontroller: characteristics and Features, Overview and architectures of Atmel 89C52 and Microchip PIC16F877 and 18F452.

### Module 2: PIC Microcontroller:

### Module 3: Software architecture and RTOS:
- Software Architecture: Round Robin- Round Robin with interrupts -Function Queue. Scheduling Architecture RTOS: Architecture -Tasks and Task States -Tasks and Data -Semaphores and Shared Data - Message Queues -Mail Boxes and pipes -Timer Functions -Memory Management Interrupt Routines

### Module 4: Basic design using a real time operating system:
- Overview. General principles. Design of an embedded system.

### Module 5: Software development tools and debugging techniques:

---

**Text Books:**

**Reference Books:**

---

**ARTIFICIAL INTELLIGENCE**

**EEE-705(c)**

**Credit:** 3  
**Contact:** 3L  
**Hour**

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
</table>
### Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year

Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

<table>
<thead>
<tr>
<th>2</th>
<th><strong>Searching techniques:</strong></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th><strong>Knowledge representation:</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First order logic – representation revisited – Syntax and semantics for first order logic – Using first order logic – Knowledge engineering in first order logic - Inference in First order logic – prepositional versus first order logic – unification and lifting – forward chaining – backward chaining - Resolution - Knowledge representation - Ontological Engineering - Categories and objects – Actions - Simulation and events - Mental events and mental objects.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th><strong>Learning:</strong></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th><strong>Applications:</strong></th>
</tr>
</thead>
</table>

**Text Books:**

**Reference Books:**

**ELECTRICAL AND ELECTRONIC SYSTEMS LABORATORY-I**

**EEE-781**

**Credit:** 2  **Contact:** 3L

The students would INDIVIDUALLY design the equipment and systems as per specifications provided by the class teacher following established procedures.

For each student, one item from each of the three groups would be chosen.

- For unspecified items of specification and or specifications of wires, cables etc., data should be taken by students from handbooks and Indian standard.
- Students should spend the allotted periods for carrying out design computations. Their attendance shall be recorded.
- Students should maintain a dedicated bound notebook for recording design activities like calculations, formulae used, sketches, flowcharts etc. The notebook should be regularly submitted to the class teacher for review and signature.
- Wherever specified, design validation would mean actual hardware realization and evaluation of its performance.
- Evaluation would be based on (i) Class attendance (10%), (ii) Design Note Book (20%) (iii) Design Report (30%) (iv) Design validation and End of semester viva (40%), preferably by an external
Syllabus for B.Tech (Electrical & Electronics Engineering) Up to Fourth Year
Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

Group-A
• Designing a heating element with specified wattage, voltage and ambient temperature.
• Designing an iron core (with air gap) inductor with specified operating dc current and minimum inductance.

Group-B
• Designing the power distribution system for a small township.
• Wiring and installation design of a multistoried residential building (G+4, not less than 16 dwelling flats with a lift and common pump).

Group-C
• Design and validation of the electronic commutation system for a permanent magnet fractional hp motor.
• Design and validation of a variable voltage stabilized DC power supply using a linear regulator, power transistor, zener diode. All the components, viz. the transformer, heat-sinks, electronic components and filter should be completely specified.

VIII Semester
Theory
Organisational Behaviour
HU801A
Contracts: 2L
Credits: 2

1. Organizational Behaviour: Definition, Importance, Historical Background, Fundamental Concepts of OB, Challenges and Opportunities for OB. [2]
2. Personality and Attitudes: Meaning of personality, Personality Determinants and Traits, Development of Personality, Types of Attitudes, Job Satisfaction. [2]
7. Leadership: Definition, Importance, Theories of Leadership Styles. [2]
8. Organizational Politics: Definition, Factors contributing to Political Behaviour. [2]

References:
3. Shukla, Madhukar: Understanding Organizations – Organizational Theory & Practice in India, PHI

HIGH VOLTAGE ENGINEERING
EEE-801 (a)
Credit: 3
Contact: 3L

53
<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
</table>
| 1      | **Breakdown phenomena:**  
  Breakdown of Gases: Mechanism of Break down of gases, Charge multiplication, Secondary emission, Townsend Theory, Streamer Theory, Paschen’s Law, Determination of Minimum breakdown voltage, Breakdown in non uniform field, Effect of polarity on corona inception and break down voltage.  
  Partial Discharge: definition and development in solid dielectric.  
  Breakdown of Liquid: Intrinsic Break down, Cavitation Theory, Suspended particle Theory.  
  Breakdown in Vacuum: Non metallic electron emission mechanism, Clump mechanism, Effect of pressure on breakdown voltage. | 12   |
| 2      | **Generation of High Voltage:**  
  Generation of high AC voltages: Testing transformer, Cascaded transformer, Series resonant circuit, single stage and multi stage. Advantages of Series Resonant Circuit in testing of cables.  
  Generation of DC high voltage: Cockcroft Walton doubler and multistage circuit, Electrostatic generator.  
  Definition of Impulse Voltage as per Indian Standard Specification, Wave front and wave tail time. Generation of Impulse Voltage, Multistage  
  Impulse generator, triggering of Impulse Generator. | 10   |
| 3      | **Measurement of High Voltage:**  
  Sphere gap voltmeter, AC, DC and impulse high voltage measurement as per Indian Standard Specifications. Resistance and Capacitance Potential dividers, Peak voltmeters for measurement of high AC voltage in conjunction with capacitance dividers, Capacitance Voltage Transformer, Rotating Voltmeter for the measurement of DC high voltage, Electrostatic Voltmeter | 06   |
| 4      | **Transient in power systems:**  
  Lightning Phenomena, Electrification of cloud, Development of Lightning Stroke, lightning induced over voltage, direct stroke, indirect stroke.  
  Protection of Electrical Apparatus against over voltage, Lightning Arrestors, Valve Type, Metal Oxide arresters, Expulsion type. Effect of location of lightning arresters on protection of transformer. Protection of substation, Ground wires.  
  Insulation Co ordination, Basic Insulation level. Basic Impulse level, Switching Impulse level. Volt time characteristics of protective devices, Determination of Basic Impulse level of | 08   |
substation equipment.

5

**High Voltage Testing:**

High Voltage testing, Testing as per Indian Standard Specifications, Power frequency withstand, induced over voltage and impulse test on transformers, Power frequency wet withstand test and impulse test on insulators

**Numerical problems to be solved in the class.**

**Text Books:**

6. High Voltage Engineering, Dr. R.S. Jha, Dhanpat Rai & Sons.

**Reference Books:**


**ILLUMINATION ENGINEERING**

EEE-801 (b)  
Credit: 3  
Contact: 3L

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L</th>
</tr>
</thead>
</table>
| 1      | **Light, sight & color:**  
| 2      | **Measurement of light:**  
      | Measurement of light - radiometric and photometric quantities, units of measurement, standardization. Measurement of light distribution, direct and diffused reflection, fundamental concepts of colourimetry and measurement of colour. | 06 |
| 3      | **Lamp, accessories & luminaries:**  
      | Light production by gas discharge, fluorescence, incandescence, daylight principle of operation, light efficacy, color, electrical characteristics, typical applications, dimming condition of GLS filament, tungsten halogen lamps, fluorescent tubes, compact fluorescent lamp (CFL), low and high pressure sodium lamps, high pressure mercury lamp, metal halide lamp.  
      | Functions of luminaries, classification, Materials Used in luminaries manufacturing, reflection, refraction, diffusion, polarization and optical design, photometric measurements, application data and its use. | 12 |
4 Interior lighting:
Objectives quantity and quality of light, selection of lamps, luminaries section, placement. Design considerations for lighting of offices, conference rooms, hospitals, teaching places, house etc., design calculations.

5 Lighting control:
Types of lighting controls, strategy for selection, benefits of lighting control.
Electric distribution system for lighting, maintenance strategies, group replacement schedule.
Techniques of achieving energy efficient lighting design, role of computers in lighting design, advantages and limitations of computer aided lighting design.

Text Books:
1. Utilization of Electric Power, C.L. Wadha, New Age International Ltd.
2. Generation, Distribution and Utilization of electrical energy, C.L. Wadha, New Age International Ltd.

ENERGY MANAGEMENT & AUDIT
EEE-801 (c)

<table>
<thead>
<tr>
<th>Credit: 3</th>
<th>Contact: 3L</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Module</strong></td>
<td><strong>Content</strong></td>
<td><strong>Hour</strong></td>
</tr>
<tr>
<td>2</td>
<td>Procedures and Techniques: Level of responsibilities, energy sources, control of energy and uses of energy, get Facts, figures and impression about energy /fuel and system operations, Past and Present operating data, Special tests, Questionnaire for data gathering. Energy Policy Planning and Implementation: Incremental cost concept, mass and energy balancing techniques, inventory of Energy inputs and rejections, Heat transfer calculations, Evaluation of Electric load characteristics, process and energy system simulation. Energy Balance &amp; MIS:</td>
<td>08</td>
</tr>
</tbody>
</table>
### Syllabus for B.Tech (Electrical & Electronics Engineering) Up to Fourth Year

Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Contact: 3L</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Determining the savings in Rs, Non economic factors, Conservation opportunities, estimating cost of implementation</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
| 2      | Energy Policy Planning and Implementation:  
**Key Elements:** Force Field Analysis, Energy Policy-Purpose, Perspective, Contents and Formulation.  
**Format and Ratification, Organizing:** Location of Energy Manager, Top Management Support, Managerial functions, Role and responsibilities of Energy Manager, Accountability, Motivating – Motivation of employees, Requirements for Energy Action Planning.  
**Information Systems:** Designing, Barriers, Strategies, Marketing and Communicating Training and Planning. | 9 |  |
| 3      | Energy Balance & MIS:  
Energy Audit Instruments: Instruments for Audit and Monitoring Energy and Energy Savings, Types and Accuracy | 09 |  |

**Text Books:**

1. Energy Management: W.R.Murphy, G.Mckay (Butterworths).
9. Energy Conservation guide book Patrick/Patrick/Fardo (Prentice Hall)
11. ASHRAEE Energy Use (4 Volumes)
### Syllabus for B.Tech(Electrical & Electronics Engineering) Up to Fourth Year

Revised Syllabus of B.Tech EEE (for the students who were admitted in Academic Session 2010-2011)

<table>
<thead>
<tr>
<th>1</th>
<th>Introduction:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>04</strong></td>
<td>Introduction of DC power transmission technology, comparison of AC and DC transmission, limitation of HVDC transmission, reliability of HVDC systems, application of DC transmission, description of DC transmission system, planning for HVDC transmission, modern trends in DC transmission.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Analysis of HDVC converters:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>06</strong></td>
<td>Choice of converter configuration, simplified analysis of Graetz circuit, converter bridge characteristics, Characteristics of a twelve pulse converter, detailed analysis of converters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Control of HVDC converter and systems:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>08</strong></td>
<td>Necessity of control of a DC link, rectifier control, compounding of rectifiers, power reversal of DC link, voltage dependent current order limit(VDCOL) characteristics of the converter, inverter extinction angle control, phase control, starting and stopping of DC link, constant power control, control scheme of HVDC converters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Harmonics and filters:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>10</strong></td>
<td>Generation of harmonics by converters, characteristics of harmonics on DC side, characteristics of current harmonics, characteristic variation of harmonic currents with variation of firing angle and overlap angle, effect of control mode on harmonics, noncharacteristic harmonic.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Fault and protection schemes in HVDC systems:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>04</strong></td>
<td>Nature and types of faults, faults on AC side of the converter stations, converter faults, fault on DC side of the systems, protection against over currents and over voltages, protection of filter units.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Multiterminal HVDC systems:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>08</strong></td>
<td>Types of multiterminal (MTDC) systems, parallel operation aspect of MTDC. Control of power in MTDC. Multilevel DC systems. Power upgrading and conversion of AC lines into DC lines, Parallel AC/DC systems, FACTS and FACTS converters.</td>
</tr>
</tbody>
</table>

---

**Text Books:**


**Reference Books:**
   Extra High Voltage AC Transmission Engineering, Rakosh Das Begamudre, New Age International (P) Ltd.

SOFTWARE ENGINEERING
EEE-802(a)

Credit: 3       Contact: 3L

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview of system analysis &amp; design: Business system concept, System development life cycle, waterfall model, Spiral Model, Feasibility Analysis, Technical feasibility, Cost-benefit Analysis, COCOMO model.</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>System design: Context diagram and DFD, Problem partitioning, Top down and bottom up design, decision tree, decision table and structured English, Functional Vs object oriented approach.</td>
<td>05</td>
</tr>
<tr>
<td>3</td>
<td>Testing: Levels of testing, Integration testing, Test case specification, Reliability assessment, Validation &amp; Verification metrics, Monitoring &amp; control</td>
<td>08</td>
</tr>
<tr>
<td>4</td>
<td>System project management: Project scheduling, Staffing, software configuration management, Quality assurance, Project monitoring.</td>
<td>07</td>
</tr>
<tr>
<td>5</td>
<td>Fundamentals of Object oriented design in UML: Static and dynamic models, necessity of modeling, UML diagrams, Class diagrams, Interaction diagrams, Collaboration diagram, Sequence diagram, State chart diagram, Activity diagram, Implementation diagram.</td>
<td>10</td>
</tr>
</tbody>
</table>

Text Books:
1. Software Engineering, R.G. Pressman, TMH
2. Software Engineering Fundamental, Behforooz, OUP
3. Software Engineering, Ghezzi, PHI

Reference Books:
1. An integrated approach to Software Engineering, Pankaj Jalote, Narosa
2. Software quality, Benmenachen, Vikas
3. IEEE standard on Software Engineering.
4. Software defect Prevention, Kane, SPD.
5. Essentials of Software Engineering, Uma, Jaico

**Operatio Rserch**  
**EEE-802(b)**  
*Credit: 3  Contact: 3L*

**DATA BASE MANAGEMENT SYSTEM**  
**EEE-802 (c)**  
*Credit: 3  Contact: 3L*

<table>
<thead>
<tr>
<th>Module</th>
<th>Content</th>
<th>Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Concept &amp; Overview of DBMS, Data model, Database language, Database administrator, Database users, Three Schema architecture of DBMS.</td>
<td>04</td>
</tr>
<tr>
<td>2</td>
<td>Entity-Relationship Model: Basic concepts, Design Issues, Mapping Constraints, Keys, Entity-Relationship Diagram, Weak Entity sets, Extended E-R features.</td>
<td>05</td>
</tr>
<tr>
<td>3</td>
<td>Relational Model: Structure of relational Databases, Relational Algebra, Relational calculus, Extended Relational Algebra operations, Views, Modification of the Database.</td>
<td>05</td>
</tr>
<tr>
<td>4</td>
<td>SQL and Integrity Constraints: Concept of DDL, DML, DCL. Basic structure, Set operations, Aggregate functions, Null values, Domain constraints, Referential integrity, Constraints, assertions, views, Nested sub queries, Data base security application development using SQL, Stored procedures and triggers.</td>
<td>06</td>
</tr>
<tr>
<td>5</td>
<td>Relational Database design: Functional dependency, Different anomalies in designing a Database, Normalization using functional dependencies, Decomposition, Boyce-Codd normal form, 3NF, Normalization using multi-valued dependencies, 4NF, 5 NF.</td>
<td>09</td>
</tr>
<tr>
<td>6</td>
<td>Internal of RDBMS: Physical data structures, Query optimization: join algorithm, statistics and cost base optimization, Transaction processing, Concurrency control and recovery management: transaction model properties, state serializability, look base protocols, two phase locking.</td>
<td>06</td>
</tr>
</tbody>
</table>
Text Books:
2.   Database Management system, Ramakrishnan, Mc Graw Hill.

Reference Books:

Practical

ELECTRICAL SYSTEMS LABORATORY-II
EEE-882
(Syllabus Modified)

Credit: 4    Contact: 6L

The students would INDIVIDUALLY design the equipment and systems as per specifications provided by the class teacher following established procedures.

For each student, one item from each of the four groups would be chosen.

• For unspecified items of specification and or specifications of wires, cables etc., data should be taken by students from handbooks and Indian standard.

• Students should spend the allotted periods for carrying out design computations. Their attendance shall be recorded.

• Students should maintain a dedicated bound notebook for recording design activities like calculations, formulae used, sketches, flowcharts etc. The notebook should be regularly submitted to the class teacher for review and signature.

• Evaluation would be based on (i) Class attendance (20%), (ii) Design Note Book (30%) (iii) Design Report (30%) (iv) End of semester viva (20%, preferably by an external examiner)

• Topics of group A, B & C covered in 7th semester (EEE-782) are not to be attempted in the 8th semester (EEE-882)

Group-A

• Designing and validation of electronic fan regulator.

• Designing and validation of an electronic choke for fluorescent tube (with or without quick start feature).
<table>
<thead>
<tr>
<th>Group-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Design and validation of a variable voltage stabilized DC power supply using a switching mode regulator. All the components should be completely specified.</td>
</tr>
<tr>
<td>• Designing of a variable frequency PWM motor controller for a squirrel cage Induction motor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Designing the power installation and earthing system for an IT lab with not less than 60 personal computers /servers and other equipment and an UPS of 10 KVA.</td>
</tr>
<tr>
<td>• Illumination system design for an IT enabled service (ITES) floor with work area, refreshment room, washrooms and corridor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Design a control circuit of a Lift mechanism</td>
</tr>
<tr>
<td>• Design a controller for speed control of DC machine using micro controller.</td>
</tr>
</tbody>
</table>