SUSTAINABILITY PERFORMANCE ASSESSMENT OF MUNICIPAL SOLID WASTE MANAGEMENT UTILISING AGGREGATED INDICATORS APPROACH

CINDY LEE IK SING

UNIVERSITI TEKNOLOGI MALAYSIA
SUSTAINABILITY PERFORMANCE ASSESSMENT OF MUNICIPAL SOLID WASTE MANAGEMENT UTILISING AGGREGATED INDICATORS APPROACH

CINDY LEE IK SING

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Environmental Engineering)

Faculty of Chemical and Energy Engineering
Universiti Teknologi Malaysia

FEBRUARY 2018
I like to dedicate this thesis to my beloved family. Thank you for all the supports and encouragements invested in me along this journey. The amount of gratitude I felt towards your love and support cannot be put into words.

I love you.
Firstly, I like to thank my supportive and loving supervisor, Associate Professor Dr. Zainura Zainon Noor, for her relentless motivation and encouragement. Her passion towards protecting the environment has opened my eyes towards a better world. My internal and external co-supervisor, Prof. Dr. Mohd Razman bin Salim and Prof. Dr. Takseshi Fujiwara, for both their supports and guidance. Besides that, I like to acknowledge SWCorp Malaysia for their continuous support and tremendous role in making this thesis achievable. And of course, Miss Nurul Hana Mohamed, for her patience and kindness in sharing her knowledge and experiences with me. Furthermore, I like to sincerely thank Mr. Mohd Rizalman Mohd Ali, who made this thesis possible at the very beginning. Anyone whom I didn’t mention but share my doubts and troubles along this journey, giving me words of encouragement and advices whenever I needed, and never ever gives up on me, I will not forget all the good deeds you have done for me. I know, and I will always remember. From the bottom of my heart, thank you so much.
ABSTRACT

There is a need for effective and sustainable municipal solid waste (MSW) management system to be implemented in Malaysia, especially in the urban areas. Indicators have often been chosen as a tool to evaluate the performances of the current MSW management system in Malaysia. From the literature reviewed, no index was found to be similar with the one being proposed by this study. This study was conducted to produce a set of indicators that evaluate the MSW management system throughout the entire life cycle. The development of these indicators involved intensive literature reviews, discussion meetings with stakeholders, and workshop organisation with solid waste management experts. Weightage were assigned to the established indicators by using analytical hierarchy process, which were then incorporated into a performance index, known as municipal solid waste management performance index (MSWMPI). Data collection were done at five cities, which were Muar, Rembau, Putrajaya, Langkawi and Pekan. As a result, a total of nine indicators under four criteria, C1 (MSW Generation and Segregation), C2 (MSW Collection and Transportation), C3 (MSW Treatment) and C4 (MSW Disposal), were finalised. The weightage for the four criteria were found to be 32.17% for C1, 19.82% for C2, 25.41% for C3, and 22.60% for C4. Among the five cities, Pekan had the highest MSWMPI, with a value of 74.85 and was rated as performing good. On the other hand, the MSW management system in Muar had the lowest MSWMPI, with a value of 51.23. Langkawi had an MSWMPI of 59.89, which was followed behind closely by Rembau (58.12) and finally, Putrajaya had the MSWMPI value of 52.43. City profiling among the respective cities had also been done to identify the hotspots in the MSW management system. It was found that most cities performing well in C1 and C2, would not perform greatly in C3 and C4, and vice versa.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF EQUATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xix</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xx</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Background of Study</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.3 Problem Statement</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.4 Research Objectives</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.5 Scope</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.6 Significance of Study</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1.7 Thesis Layout</td>
<td>9</td>
</tr>
</tbody>
</table>
LITERATURE REVIEW

2.1 Introduction 11
2.2 Solid Waste 12
 2.2.1 Categories of Solid Waste 12
2.3 Municipal Solid Waste (MSW) 14
 2.3.1 Current Global Scenario on MSW 14
 2.3.2 MSW Scenario in Malaysia 18
2.4 MSW Management 24
 2.4.1 MSW Generation 24
 2.4.2 MSW Segregation 27
 2.4.3 MSW Collection and Transportation 29
 2.4.4 MSW Treatment and Disposal 30
 2.4.5 MSW Management in Malaysia 37
2.5 Assessment methods on the Performance of Solid Waste Management System 40
2.6 Indicators 42
 2.6.1 Existing Indicators with Respects to Solid Waste Management 46
 2.6.2 Existing Indices with Respects to Solid Waste Management 77
2.7 Data Aggregation 84
2.8 Multi-Criteria Decision Making (MCDM) 87
 2.8.1 Multi-Attribute Utility Theory (MAUT) 87
 2.8.2 ELECTREE 88
 2.8.3 PROMETHEE 89
 2.8.4 TOPSIS 90
 2.8.5 Analytical Hierarchy Process (AHP) 92

RESEARCH METHODOLOGY

3.1 Introduction 96
3.2 Research Background and Design 96
3.3 Establishment of Criteria and Indicators 99
 3.3.1 Filtration Process of Indicators: Stage 1 102
3.3.2 Filtration Process of Indicators: Stage 2 105
3.4 Establishment of Framework Structure 107
3.5 Adoption of Proximity-to-Target (PTT) Method 108
 3.5.1 Target and Low Benchmark 110
 3.5.2 Sample Calculations of PTT Score for Indicators 111
3.6 Weightage Assignment by Analytical Hierarchy Process (AHP) 113
 3.6.1 Results of AHP Analysis 131
3.7 Data Collection 117
 3.7.1 Additional Data Collection for MSW 6 119
3.8 Raw Data for Indicators 121
 3.8.1 Additional Data Transformation for MSW 6 Indicator 121
 3.8.2 Additional Data Transformation for MSW 8 Indicator 122
3.9 Aggregation of Indicators to Form MSWMPI 123

4 RESULTS AND DISCUSSION: PART I 126
4.1 Introduction 126
4.2 Developed Study Framework 126
 4.2.1 Description of the Developed Framework 128
4.3 Type, Target and Low Benchmark of Established Indicators 131
 4.3.1 Type of Established Indicators 133
 4.3.2 Target and Low Benchmark of Established Indicators 134
4.4 PTT Score of Indicators and Criteria 137
 4.4.1 Criteria 1: MSW Generation and Segregation 137
 4.4.2 Criteria 2: MSW Collection and Transportation 142
 4.4.3 Criteria 3: MSW Treatment 148
 4.4.4 Criteria 4: MSW Disposal 152
RESULTS AND DISCUSSION: PART II

5.1 Introduction 157
5.2 MSWMPI Results and Discussion 157
5.3 City Profiling 160
 5.3.1 City Profile: Langkawi 160
 5.3.2 City Profile: Muar 165
 5.3.3 City Profile: Pekan 169
 5.3.4 City Profile: Putrajaya 172
 5.3.5 City Profile Rembau 176
5.4 Strategical Enhancements Based on MSWMPI Results 180

CONCLUSION AND RECOMMENDATIONS

6.1 Introduction 183
6.2 Conclusion 183
6.3 Recommendations for Future Research and Limitations of Study 186

REFERENCES

Appendices A – D 226 – 232
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Waste Categories and Definition</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>MSW Generation Rate by Income of Country</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Waste Composition by Income of Country</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>MSW Generation of Each States in Malaysia Year 1996 to 2009</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>MSW Composition of Malaysia from Year 2001 to 2010</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>The Advantages and Disadvantages of Source Separation</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Methods of MSW Collection and Its Description</td>
<td>30</td>
</tr>
<tr>
<td>2.8</td>
<td>Important Features of A Sanitary Landfill and Its Descriptions</td>
<td>33</td>
</tr>
<tr>
<td>2.9</td>
<td>Type of Incinerator Design and Its Description</td>
<td>35</td>
</tr>
<tr>
<td>2.10</td>
<td>Private Solid Waste Management Consortia in Malaysia</td>
<td>38</td>
</tr>
<tr>
<td>2.11</td>
<td>The Concept of SMART, SPICED and CREAM with Its description</td>
<td>45</td>
</tr>
<tr>
<td>2.14</td>
<td>Data Normalisation Methods and Its Descriptions</td>
<td>86</td>
</tr>
<tr>
<td>2.15</td>
<td>The Fundamental Scale of AHP</td>
<td>92</td>
</tr>
<tr>
<td>2.16</td>
<td>Average Random Consistency Index Values</td>
<td>94</td>
</tr>
<tr>
<td>3.1</td>
<td>Description of the Selected Cities in This Study</td>
<td>98</td>
</tr>
<tr>
<td>3.2</td>
<td>List of Forty-Three (43) Potential Indicators for Malaysia</td>
<td>100</td>
</tr>
<tr>
<td>3.3</td>
<td>List of Twenty-Two (22) Indicators Suitable for Malaysia</td>
<td>104</td>
</tr>
<tr>
<td>3.4</td>
<td>List of Nine (9) Indicators under Four (4) Criteria Established</td>
<td>106</td>
</tr>
<tr>
<td>3.5</td>
<td>Raw Data Required for MSW 7 PTT Score Calculation</td>
<td>111</td>
</tr>
<tr>
<td>3.6</td>
<td>Sample Calculations of PTT Score for MSW 7</td>
<td>112</td>
</tr>
<tr>
<td>3.7</td>
<td>Distribution of AHP Questionnaire Respondents</td>
<td>116</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.8</td>
<td>Weight Value of Each criterion</td>
<td>131</td>
</tr>
<tr>
<td>3.9</td>
<td>Source of Data Collected for Established Indicators</td>
<td>119</td>
</tr>
<tr>
<td>3.10</td>
<td>PTT Score of All Indicators for Langkawi City</td>
<td>124</td>
</tr>
<tr>
<td>3.11</td>
<td>Sample Calculations of MSWMPI for Langkawi City</td>
<td>124</td>
</tr>
<tr>
<td>3.12</td>
<td>Distribution of PTT Score, Star Rating, Colour Code and Performance</td>
<td>127</td>
</tr>
<tr>
<td>4.1</td>
<td>Established Indicators and Its Description</td>
<td>130</td>
</tr>
<tr>
<td>4.2</td>
<td>Results on the Type of Indicators Established</td>
<td>134</td>
</tr>
<tr>
<td>4.3</td>
<td>Target and Low Benchmark of All Indicators Established</td>
<td>136</td>
</tr>
<tr>
<td>4.4</td>
<td>PTT Scores of Criteria and Indicators for C1 with Colour Coding</td>
<td>137</td>
</tr>
<tr>
<td>4.5</td>
<td>PTT Scores for MSW 1 Among Five (5) Cities</td>
<td>139</td>
</tr>
<tr>
<td>4.6</td>
<td>PTT Scores for MSW 2 Among Five (5) Cities</td>
<td>141</td>
</tr>
<tr>
<td>4.7</td>
<td>PTT Scores of Criteria and Indicators for C2 with Colour Coding</td>
<td>141</td>
</tr>
<tr>
<td>4.8</td>
<td>PTT Scores for MSW 3 Among Five (5) Cities</td>
<td>143</td>
</tr>
<tr>
<td>4.9</td>
<td>PTT Scores for MSW 4 Among Five (5) Cities</td>
<td>145</td>
</tr>
<tr>
<td>4.10</td>
<td>PTT Scores for MSW 5 Among Five (5) Cities</td>
<td>147</td>
</tr>
<tr>
<td>4.11</td>
<td>PTT Scores of Criteria and Indicators for C3 with Colour Coding</td>
<td>147</td>
</tr>
<tr>
<td>4.12</td>
<td>PTT Scores for MSW 6 Among Five (5) Cities</td>
<td>149</td>
</tr>
<tr>
<td>4.13</td>
<td>PTT Scores for MSW 7 Among Five (5) Cities</td>
<td>151</td>
</tr>
<tr>
<td>4.14</td>
<td>PTT Scores of Criteria and Indicators for C4 with Colour Coding</td>
<td>152</td>
</tr>
<tr>
<td>4.15</td>
<td>PTT Scores for MSW 8 Among Five (5) Cities</td>
<td>154</td>
</tr>
<tr>
<td>4.16</td>
<td>PTT Scores for MSW 9 Among Five (5) Cities</td>
<td>156</td>
</tr>
<tr>
<td>5.1</td>
<td>MSWMPI for the Five (5) Cities</td>
<td>158</td>
</tr>
<tr>
<td>5.2</td>
<td>Calculation of MSWMPI for Langkawi City</td>
<td>161</td>
</tr>
<tr>
<td>5.3</td>
<td>Calculation of MSWMPI for Muar City</td>
<td>165</td>
</tr>
<tr>
<td>5.4</td>
<td>Calculation of MSWMPI for Pekan City</td>
<td>169</td>
</tr>
<tr>
<td>5.5</td>
<td>Calculation of MSWMPI for Putrajaya City</td>
<td>173</td>
</tr>
<tr>
<td>5.6</td>
<td>Calculation of MSWMPI for Putrajaya City</td>
<td>176</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Distribution of MSW Generation Rate around the Globe</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Average Global Waste Composition</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>The Composition of MSW in Malaysia Year 2005</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>The Composition of MSW in Kuala Lumpur at Year 2012</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Waste Management Hierarchy</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Design of the Liner System in A Sanitary Landfill</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic Diagram of Fluidized Bed Incinerator</td>
<td>35</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic Diagram of Starved Air Incinerator</td>
<td>35</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic Diagram of Rotary Kiln Incinerator</td>
<td>36</td>
</tr>
<tr>
<td>2.10</td>
<td>Schematic Diagram of Liquid and Gaseous Waste Incinerator</td>
<td>36</td>
</tr>
<tr>
<td>2.11</td>
<td>Information Pyramid</td>
<td>42</td>
</tr>
<tr>
<td>2.12</td>
<td>The Utilisation of Indicators in Decision Making</td>
<td>43</td>
</tr>
<tr>
<td>2.13</td>
<td>Seven (7) Steps of Original ELECTREE method</td>
<td>89</td>
</tr>
<tr>
<td>2.14</td>
<td>Procedures of TOPSIS Method</td>
<td>91</td>
</tr>
<tr>
<td>2.15</td>
<td>Framework of GMM Calculations</td>
<td>93</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodological Flow Chart of Study</td>
<td>99</td>
</tr>
<tr>
<td>3.2</td>
<td>Workshop at SWCorp Malaysia Headquarter</td>
<td>103</td>
</tr>
<tr>
<td>3.3</td>
<td>One-to-one Discussion Meeting with Private Waste Consortium Contractor</td>
<td>103</td>
</tr>
<tr>
<td>3.4</td>
<td>Process of Criteria and Indicators Establishment in This Study</td>
<td>107</td>
</tr>
<tr>
<td>3.5</td>
<td>Established Study Framework in Hierarchy Structure</td>
<td>108</td>
</tr>
<tr>
<td>3.6</td>
<td>The Concept of Proximity-to-Target (PTT) Method</td>
<td>109</td>
</tr>
</tbody>
</table>
3.7 Steps to Determine the Eigenvector Values
3.8 Screenshot of the template of BPMSG AHP Online System
3.9 Establishment of Weightage for Indicators
3.10 Five (5) chosen cities in this Study
3.11 Data Obtaining at SWCorp Malaysia Headquarter
3.12 Sample Distribution of 3R Awareness Survey
3.13 Organization of Questionnaires According to City
4.1 Established Framework of MSWMPI
4.2 Screenshot of the overall outcome of BPMSG AHP Online System
5.1 Distribution of MSWMPI and Criteria Scores for the Five (5) Cities
5.2 The Breakdown of MSWMPI on PTT scores for Langkawi
5.3 The Distribution of PTT Scores through Spider-web Chart for Langkawi
5.4 The Breakdown of MSWMPI on PTT scores for Muar
5.5 The Distribution of PTT Scores through Spider-web Chart for Muar
5.6 The Breakdown of MSWMPI on PTT scores for Pekan
5.7 The Distribution of PTT Scores through Spider-web Chart for Pekan
5.8 The Breakdown of MSWMPI on PTT scores for Putrajaya
5.9 The Distribution of PTT Scores through Spider-web Chart for Putrajaya
5.10 The Breakdown of MSWMPI on PTT scores for Rembau
5.11 The Distribution of PTT Scores through Spider-web Chart for Rembau
LIST OF EQUATIONS

<table>
<thead>
<tr>
<th>EQUATION NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mathematical Equation for MAUT Theory</td>
<td>88</td>
</tr>
<tr>
<td>2.2</td>
<td>Mathematical Equation for Geometric Mean (GMM)</td>
<td>93</td>
</tr>
<tr>
<td>2.3</td>
<td>Mathematical Equation for Consistency Ratio (CR)</td>
<td>94</td>
</tr>
<tr>
<td>2.4</td>
<td>Mathematical Equation for Consistency Index (CI)</td>
<td>94</td>
</tr>
<tr>
<td>3.1</td>
<td>Arithmetic Formula for Type A Indicator</td>
<td>109</td>
</tr>
<tr>
<td>3.2</td>
<td>Arithmetic Formula for Type B Indicator</td>
<td>109</td>
</tr>
<tr>
<td>3.3</td>
<td>Mathematical Equation for 3R Awareness Level</td>
<td>121</td>
</tr>
<tr>
<td>3.4</td>
<td>Mathematical Equation for IPCC Methane Emission Estimation</td>
<td>122</td>
</tr>
<tr>
<td>3.5</td>
<td>Mathematical Equation for IPCC Methane Generation Potential</td>
<td>123</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AHP – Analytical Hierarchy Process
LCT – Lifecycle Thinking
MSWMPI – Municipal Solid Waste Management Performance Index
PTT – Proximity-to-Target
MCDM – Multi-Criteria Decision Making
MPRRP – Maximum Practicable Recycling Rate Provision
MSW – Municipal Solid Waste
RCE – Resource Conservation Efficiency
ZWI – Zero Waste Index
SWCorp – Solid Waste and Public Cleansing Management Corporation
FT – Federal Territory
NGOs – Non-governmental organizations
PPSPPA – Perbadanan Pengurusan Sisa Pepejal dan Pembersihan Awam
CBA – Cost – Benefit Analysis
CEA – Cost Effectiveness Analysis
Eco-Eff’ – Eco-Efficiency Analysis
EA – Emergy Analysis
EIA – Environmental Impact Assessment
LCA – Life Cycle Assessment
LCC – Life Cycle Cost
RA – Risk Assessment
SEA – Strategic Environmental Assessment
WTT – Waste Treatment Technique
C&D – Construction and demolition
EU SDS – European Union Sustainable Development Strategy
<table>
<thead>
<tr>
<th>Abbr</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNCSD</td>
<td>United Nations Commission on Sustainable Development</td>
</tr>
<tr>
<td>SDI</td>
<td>Sustainable Development Indicators</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>DSR</td>
<td>Driving Force, State and Response</td>
</tr>
<tr>
<td>SWM</td>
<td>Solid Waste Management</td>
</tr>
<tr>
<td>EPI</td>
<td>Environmental Performance Index</td>
</tr>
<tr>
<td>ISWM</td>
<td>Integrated and Sustainable Waste Management</td>
</tr>
<tr>
<td>DPSIR</td>
<td>Driving Force-Pressure-State-Impact-Response</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>CTI</td>
<td>Cleaner Treatment Index</td>
</tr>
<tr>
<td>NRI</td>
<td>Net Recovery Index</td>
</tr>
<tr>
<td>RCE</td>
<td>Resource Conservation Efficiency</td>
</tr>
<tr>
<td>SC%</td>
<td>Percentage of Separate Waste Collection</td>
</tr>
<tr>
<td>ZWI</td>
<td>Zero Waste Index</td>
</tr>
<tr>
<td>MRI</td>
<td>Material Recovery Indicator</td>
</tr>
<tr>
<td>ERI</td>
<td>Energy Recovery Indicator</td>
</tr>
<tr>
<td>CI</td>
<td>Costs Indicator</td>
</tr>
<tr>
<td>MAU</td>
<td>Multi-Attribute Utility</td>
</tr>
<tr>
<td>MAUT</td>
<td>Multi-Attribute Utility Theory</td>
</tr>
<tr>
<td>ELECTRE</td>
<td>Élimination Et Choix Traduisant la Réalité</td>
</tr>
<tr>
<td>PROMETHEE</td>
<td>Preference Ranking Organization Method for Enrichment Evaluations</td>
</tr>
<tr>
<td>TOPSIS</td>
<td>Technique for Order Preference by similarity to Ideal Solution</td>
</tr>
<tr>
<td>GMM</td>
<td>Geometric Means</td>
</tr>
<tr>
<td>WAMM</td>
<td>Weighted Arithmetic Means</td>
</tr>
<tr>
<td>CR</td>
<td>Consistency Ratio</td>
</tr>
<tr>
<td>RI</td>
<td>Random Index</td>
</tr>
<tr>
<td>CI</td>
<td>Consistency Index</td>
</tr>
<tr>
<td>MCF</td>
<td>Methane Correction Factor</td>
</tr>
<tr>
<td>RM</td>
<td>Ringgit Malaysia</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\begin{itemize}
 \item CO\textsubscript{2} \quad \text{Carbon Dioxide}
 \item CH\textsubscript{4} \quad \text{Methane}
 \item N\textsubscript{2}O \quad \text{Nitrous Oxide}
 \item kg \quad \text{Kilogram}
 \item \sum \quad \text{Sum}
 \item \Pi \quad \text{Product}
 \item \lambda\text{\textsubscript{max}} \quad \text{Largest eigenvalue}
 \item MSW\textsubscript{x} \quad \text{Mass of solid waste sent to landfill in inventory year}
 \item Lo \quad \text{Methane generation potential}
 \item f\text{\textsubscript{rec}} \quad \text{Fraction of methane recovered at landfill (flared or energy recovery)}
 \item OX \quad \text{Oxidation factor}
 \item DOC \quad \text{Degradable organic carbon in year of deposition}
 \item DOC\textsubscript{F} \quad \text{Fraction of DOC that is ultimately degraded}
 \item F \quad \text{Fraction of methane in landfill gas}
\end{itemize}
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Gantt Chart</td>
<td>212</td>
</tr>
<tr>
<td>B</td>
<td>Sample of AHP Questionnaire</td>
<td>214</td>
</tr>
<tr>
<td>C</td>
<td>Sample of 3R Awareness Questionnaire</td>
<td>220</td>
</tr>
<tr>
<td>D</td>
<td>Manual Calculation of AHP</td>
<td>232</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Under this chapter, introduction towards this study were made. Firstly, the background of study was shared to give a general idea where the study focusing on. Then, the problem that this study focusing on were highlighted and discussed. With that, the research objectives of this study were identified. The scope of this study was discussed to show the boundary of this study. Furthermore, the significance of this study was discussed to show the importance and contribution of this study to society. The layout of this thesis was explained at the end of the chapter.

1.2 Background of Study

Municipal solid waste (MSW) is commonly understood as waste that is generated from residential and commercial areas, that excludes those from hazardous properties that are generated from industrial premises and construction areas (Environmental Protection Agency, 2003). Environmental Protection Agency (2010) explained materials like construction and demolition debris, municipal waste water treatment sludge and non-hazardous industrial waste are not classified as MSW, although these materials are most likely to be disposed to landfills.
Globalization, industrialization, rapid social and economic development has started a disturbing trend of solid waste generation in many countries (Chang, 2015; Jayasinghe et al., 2013; Jin and Lin, 2012). Breaking the historical link between wealth creation and waste creation remains as one of the tough challenge for every country (Hester and Harrison, 2002; Islam, 2017). As the status of a country increases, incomes and living standards of the citizens increases, which then leads to more consumption of goods and services. This increases the rate of waste generation in the country as its citizens afford to spend more money for a more comfortable living (Hoornweg and Bhada-Tata, 2012).

Malaysia, as one of the developing countries located in South East Asia, faces the same fate. The country is separated into two regions by the South China Sea, which are West Malaysia and East Malaysia. The capital city Kuala Lumpur, while Putrajaya is set as the administrative centre of the federal government. As explained by Abu Eusuf et al. (2011) and Johari et al. (2014), the management of solid waste process usually involves the generation, storage, collection and transport, processing and disposal of solid waste. In Malaysia, the management of MSW in certain regions has been outsourced by the government to private waste consortia, while the remaining are under the responsibility of its own local municipality respectively (Abdul Manaf et al., 2009; Johari et al., 2014). There are four (4) private waste consortia currently collecting, transporting and disposing the generated MSW, which are: Alam Flora Sdn. Bhd., SWM Environment Sdn. Bhd., E – Idaman Sdn. Bhd. and Eastern Waste Management Sdn. Bhd. (Johari et al., 2014). Each of the waste consortia is responsible for its own region and has its own operation coverage (Johari et al., 2014). However, it is reported that about 70 – 76% of MSW generated is successfully collected by waste consortia (Abdul Manaf et al., 2009; Johari et al., 2014), and about 95% of the collected MSW are send to disposal. The most common MSW disposal being practiced in Malaysia landfilling. With the increasing population and rocketing generation of MSW along with time, concerns arise on the issue whether land filling will be sufficient to tackle and receive the disposed MSW or not (Abu Eusuf et al., 2011).
Budhiarta et al. (2012) found that the main source that contributes to MSW generation in Malaysia is household, instead of commercial and industrial premises. It is found that the waste composition among the household waste is of food waste and its mixture (74%), plastics (21%), others (2%) and mixed organic and wood (1%). Food waste can be reused as composting while plastic waste can be easily recycled, however, they are found to be the largest components among the household waste generated. It is brought to light that only less than 5% of waste are separated and recycled in reality, though the amount of waste conceivably be recycled is massive (Abdul Jalil, 2010; Hassan et al., 2000; Isa et al., 2005; Omran et al., 2009; Periathamby et al., 2009). This shows that until today, not only the awareness on waste reduction among the public is still low since more than a decade ago, the practices and behaviour towards waste reduction are still poor as well.

Many studies (Abdul Manaf et al., 2009; Ahmed et al., 2013; Johari et al., 2014; Tarmudi et al., 2009) have been conducted by various researches in Malaysia over the years to further investigate the factors contributing and promoting the generation of MSW. All authors in unison concluded that, rapid economic and population growth, changing lifestyle and rural-urban migration are the four (4) main factors that contributes to the increasing generation of MSW. Tarmudi et al. (2009) has also discovered that multi-racial community in Malaysia plays a role in the increasing generation of MSW. Since there are different cultures and beliefs, there are various festivities along the year to be celebrated among the community as well. With these celebrations, there is no doubt that the generation of MSW would then be multiplied.

Ineffective and inefficient solid waste management will cause degradation and harm towards the environment (Kurniawan, 2010), this is a fact that everybody is aware of. Open dumpsites bring severe environmental issues to a country, which includes contamination of surface water, ground water and solid through direct contact of waste or leachate (Zurbrugg, 2002). This not only affects the health of humans and animals, but it also causes serious losses to the country’s economy and other welfare. Emissions of greenhouse gases from waste stream, contributes to climate change and global warming (Environmental Protection Agency, 2002; Kurniawan, 2010), too
cannot be ignored. Calabro (2009) highlighted in his study that waste management practices have directly emitted greenhouse gases such as: carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) into our atmosphere. Chua et al. (2011) agreed and further explained that landfills and various practices of waste water treatments released greenhouse gases, where the common greenhouse gases produced by landfills are CH₄, wastewater treatment commonly produced CH₄ and N₂O, and lastly burning of wastes that contained carbon would produce CO₂.

1.3 Problem Statement

Along with the development of the nation, waste generation has been one of the critical issues that need immediate attention in Malaysia. It has been well established by many studies that urbanization rate and economic development increases along with waste generation (Budhiarta et al., 2012; Guerrero et al., 2013; Hoornweg and Bhada-Tata, 2012; Hoornweg et al., 2015). From a MSW generation rate of 0.5 – 0.8 kg per capita per day recorded at year 2003, it has increased to 0.5 – 2.5 kg per capita per day recently, as highlighted by Johari et al. (2014). Ninth Malaysia Plan (2006 – 2010) had published that in year 2001, a rate of 16,200 tonnes per day of waste were generated in Peninsular Malaysia (Government of Malaysia, 2006). This means that, an amount of 5.91 million tonnes of MSW were generated in that year. Government of Malaysia (2006) has also stated that in year 2005, MSW generation rate had reached an amount of 19,100 tonnes per day. On the other hand, Fauziah et al. (2004) had estimated that the local authorities and waste management consortia in Malaysia have to handle approximately 17,000 tonnes of MSW generated daily throughout the country. In short, the MSW generation in Malaysia has escalated steadily with time from the past decade, where Periathamby et al. (2009) highlighted that the escalation was more than 91%. Furthermore, Mohamad Taha (2016) has made a worrisome statement, where Malaysia is estimated to generate an approximate amount of 16.76 million tonnes of MSW at year 2020.
In Malaysia, the enforcement of managing and minimizing MSW is a shared responsibility not only among local authorities, but also federal government agencies like: Ministry of Housing and Local Government, Ministry of Environment, Ministry of Health and many more (Sreenivasan et al., 2012). This hinders and challenges the management of MSW in Malaysia (Abdul Manaf et al., 2009; Ogawa, 2008; Tarmudi et al., 2009). Besides that, hitherto there is no way for us to ensure, or even assess the performance of the existing MSW management system in Malaysia. With this overwhelming situation of MSW escalation happening in Malaysia, it portrays an urgent need for a holistic approach on the management of MSW to ensure its efficiency and effectiveness. Duraiappah (1996) highlighted that in order to provide the service of waste disposal for the increased waste generation, or even improve the solid waste management, it would be costly and results in allocating more money by government on existing waste management system. Collapse of the MSW management system would give rise to extravagant operation cost and environment degradation, as discussed earlier (Kurniawan, 2010; Periathamby, 2001; Sreenivasan et al., 2012; United Nations Development Programme Malaysia, 2008; Weitz et al., 2002).

There are few methods being used to assess the performance of waste management system (Coelho et al., 2012), which includes benchmarking, lifecycle assessment, multi-criteria decision making and many more. Indicators are chosen to be used as a tool that would altogether assess and ensure the performance of the existing MSW management system. This is because the utilisation of indicators not only reflect the current conditions of the existing waste management system, it can also help to monitor for future trend as well (Lockerbie et al., 2016; Visvanathan, 2012). However, the development of useful sustainable indicators is not easy. It requires not only an understanding of concepts and definitions, but also a good knowledge of environmental policy, fiscal instruments and social needs. Indicators, which are derived from data, are commonly the first and most basic tools for analysing change in society. Zabaleta (2008) mentioned that although accessibility towards data on social, economic and physical environment are expanded due to rapid development in information technology, usable information produced from these data was are at a slower rate, and thus unable to meet the increasing demand for information of environmental issue.
From the literatures reviewed, there is no index similar to the one that is being proposed in this study. This study aims to develop an index, known as “Municipal Solid Waste Management Performance Index (MSWMPI)”, where this index was interpreted from an established set of indicators that assess the environmental and socio-economic performances of the current MSW management system in Malaysia. This index represents the overall performance of MSW management system through aggregation of the established indicators. The challenge of this study is to define a simple but comprehensive set of indicators that cover all aspects of sustainability, and also to be able to be calculated by local administrators, as well as managers of the MSW management system and not only by scientists or academic experts. Nevertheless, the developed index will have the following main characteristics:

- It will evaluate the performance of an entire integrated waste management system (and not just of some of its components);
- It will focus on MSW (and not just one of its fractions);
- It will evaluate both the environmental and socio-economic performances of the system.
1.4 **Research Objectives**

The research objectives of this study are as follows:

1. To establish a set of indicators that covers all the sustainability aspects throughout the entire lifecycle of MSW management process.

2. To assign weightage to the established set of indicators using Analytical Hierarchy Process (AHP).

3. To develop a performance index that evaluate the performance of MSW management system in Malaysia by aggregating the established set of indicators.

4. To validate the developed performance index by conducting case studies.

5. To identify the hotspot in the MSW management system through the developed performance index.

1.5 **Scope**

- This study focused mainly on the MSW only, where mostly the waste generated are from residential and commercial areas.

- Lifecycle Thinking (LCT) approach is adopted so that the evaluation of the current MSW management system performance covered the entire lifecycle of the MSW management process.

- Comprehensive literature surveys and reviews are conducted to produce an extensive list of potential indicators. A finalised set of indicators suitable and applicable for Malaysia are established by conducting numerous discussion meetings and a workshop with relevant stakeholders. Besides that, it is made certain that the established set of indicators are readily available and accessible.
data that are provided by SW Corp Malaysia. Survey questionnaire was used to obtain data for one of the established indicators, where the target respondents are of the community living in the selected cities.

- Analytical Hierarchy Process (AHP) was adopted to assign weightage to the criteria of the study. Therefore, another set of survey questionnaire specifically for AHP weightage assignment was designed and developed. The target respondents for this AHP questionnaire were solid waste management experts. In this study, the solid waste management experts are defined as those who have knowledge and experiences in the solid waste management in Malaysia, including government officers, researchers, academicians, officers of private waste consortia and many more.

- The performance index, which is also known as MSW Management Performance Index (MSWMPI) is determined through aggregation of the criteria score with its respective criteria weight age. Consequently, the criteria score was then being determined through aggregation of the Proximity-to-Target (PTT) score of the established indicators and its indicator weightage.

- It should be noted that in this study, the weightage of one (1) criteria is being equally distributed among the indicators established under that respective criteria. In other words, one (1) criteria weight age equals to the sum of all indicator weight age under that respective criteria.

- MSWMPI is then validated through end-user approach at five (5) selected cities, which are: Langkawi, Muar, Pekan, Putrajaya and Rembau. Data collection in these five (5) cities were conducted, where it took approximately one (1) month to finish collecting all the necessary data. The collected data were then being fed into the established indicators, where MSWMPI for each selected city was determined. Lastly, the interpretation of results given by the MSWMPI were carried out to identify the areas for improvements for each city.
1.6 Significance of Study

Since currently there is no way for the policy makers and society to know the performance of the existing MSW management system in Malaysia, MSWMPI is able to provide insights on the current performance of MSW management system in Malaysia. With these insights, evaluation on the performance and identification of potential problems in the current MSW management system can be carried out.

Besides that, since MSWMPI covers the entire lifecycle of MSW management system, the weaknesses and strength of the current MSW management system can be clearly highlighted. This provides reliable information for policy making, thus helps in decision making among the policy makers. Unnecessary and avoidable costs along the current MSW management system can be successfully identified and thus, save governmental expenditures on MSW management.

Most importantly, the framework of developing MSWMPI is flexible and adaptable with time. Not only MSWMPI monitors the performance of MSW management system from time to time, the indicators established for the development of MSWMPI can be replaced. This is to ensure MSWMPI adequately reflects the latest MSW management scenario in Malaysia. In short, MSWMPI is a useful tool for the policy makers to continuously measure and monitor the performance of the current MSW management system in Malaysia entirely.

1.7 Thesis Layout

Chapter 1 discussed about the background and problem statements of this study. Research objectives of the study were identified and listed as well. The scope and significance of this study were also discussed in Chapter 1.
Chapter 2 discusses all the relevant literatures that are included in this study. Under this chapter, solid waste, municipal solid waste (MSW), MSW management, assessment methods with respect to solid waste management, indicators and data aggregation are discussed. Lastly, multi-criteria decision making (MCDM) were discussed as well.

Chapter 3 discusses the research methodology of this study. The research background of this study was discussed, along with the methodological flow chart. Besides that, the establishment of the indicators and framework structure, and also the adoption of Proximity-to-Target (PTT) method were discussed. Weightage assignment through Analytical Hierarchy Process (AHP) and data collection for each indicator were explained as well. The raw data suitable for the indicators were explained clearly in this chapter. Lastly, the aggregation of indicators to form MSWMPI were also described.

As for Chapter 4, the results and outcomes of the study were conferred. Under this chapter, the development of study framework, along with the description of each established indicator. The results obtained from AHP were showed and discussed too. The type, target and low benchmark on each established indicator are discussed lastly.

Chapter 5 further discusses the MSWMPI for the five (5) involved cities, where the weaknesses and strengths of the MSW management of each cities are identified and discussed. This is carried out through creating a profile for each involved city. Strategical enhancements based on the MSWMPI result were proposed for each city respectively.

Lastly, with the results obtained from the study, conclusions, recommendations for future study and limitation of study were made and discussed in Chapter 6.
REFERENCES

The different types of municipal solid waste generated mostly from houses, streets, public places, shops, offices and hospitals. Management of these types of waste is most often the responsibility of municipal or other governmental authorities. Except in the metropolitan cities, M.S.W. is found only the transportation work. The activity of mostly oriented labour intensive and 2-3 workers are provided per 100 residential served. The municipal agencies spend 5-25% of their budget on M.S.W. A typical waste management practices performed by the sections of lower and middle income community special Waste-to-Energy Options in Municipal Solid Waste Management. A Guide for Decision Makers in Developing and Emerging Countries. As a federally owned enterprise, GIZ supports the German Government in achieving its objectives in the field of international cooperation for sustainable development. Friedrich-Ebert-Allee 36 + 40 53113 Bonn, Germany T +49 228 44 60 - 0 F +49 228 44 60 - 17 66. E info@giz.de I www.giz.de. Project description: Advisory Project: Concepts for Sustainable Solid Waste Management and Circular Economy. Authors: Dieter Mutz, Dirk Hengevoss, Christoph Hugi, Thomas Gross from the University of Applied Sciences and Arts Northwestern Switzerland (FHNW). Edited by: Daniel Hinchliffe, Johannes Frommann and Ellen Gunsilius from GIZ. This article assesses the performance of the city of Accra, Ghana, in municipal solid waste management as defined by the integrated sustainable waste management framework. The article reports on a participatory process to socialise the Wasteaware benchmark indicators and apply them to an upgraded set of data and information. The process has engaged 24 key stakeholders for 9 months, to diagram the flow of materials and benchmark three physical components and three governance aspects of the city's municipal solid waste management system. The results indicate that Accra is well below some ot